Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 256
Filtrar
1.
Pharmacol Rev ; 75(5): 1007-1035, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37280098

RESUMO

Cancer is a leading cause of death worldwide, resulting in ∼10 million deaths in 2020. Major oncogenic effectors are the Myc proto-oncogene family, which consists of three members including c-Myc, N-Myc, and L-Myc. As a pertinent example of the role of the Myc family in tumorigenesis, amplification of MYCN in childhood neuroblastoma strongly correlates with poor patient prognosis. Complexes between Myc oncoproteins and their partners such as hypoxia-inducible factor-1α and Myc-associated protein X (MAX) result in proliferation arrest and pro-proliferative effects, respectively. Interactions with other proteins are also important for N-Myc activity. For instance, the enhancer of zest homolog 2 (EZH2) binds directly to N-Myc to stabilize it by acting as a competitor against the ubiquitin ligase, SCFFBXW7, which prevents proteasomal degradation. Heat shock protein 90 may also be involved in N-Myc stabilization since it binds to EZH2 and prevents its degradation. N-Myc downstream-regulated gene 1 (NDRG1) is downregulated by N-Myc and participates in the regulation of cellular proliferation via associating with other proteins, such as glycogen synthase kinase-3ß and low-density lipoprotein receptor-related protein 6. These molecular interactions provide a better understanding of the biologic roles of N-Myc and NDRG1, which can be potentially used as therapeutic targets. In addition to directly targeting these proteins, disrupting their key interactions may also be a promising strategy for anti-cancer drug development. This review examines the interactions between the Myc proteins and other molecules, with a special focus on the relationship between N-Myc and NDRG1 and possible therapeutic interventions. SIGNIFICANCE STATEMENT: Neuroblastoma is one of the most common childhood solid tumors, with a dismal five-year survival rate. This problem makes it imperative to discover new and more effective therapeutics. The molecular interactions between major oncogenic drivers of the Myc family and other key proteins; for example, the metastasis suppressor, NDRG1, may potentially be used as targets for anti-neuroblastoma drug development. In addition to directly targeting these proteins, disrupting their key molecular interactions may also be promising for drug discovery.


Assuntos
Proteínas de Ciclo Celular , Neuroblastoma , Humanos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Peptídeos e Proteínas de Sinalização Intracelular , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patologia
2.
Bioessays ; 45(3): e2200121, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36707486

RESUMO

The behavior of somatic stem cells is regulated by their niche. Interaction between hematopoietic stem cells (HSCs) and their niches are a representative model to understand stem cell-niche interplay. Here, we provide an overview of crosstalk between HSCs and their niches in bone marrow and extramedullary organs following the life journey of HSCs from emergence, development, maturation until aging. We highlight the unique differences of HSC niches in different life stages within various organs focusing on recent literature to propose new speculations and hypotheses.


Assuntos
Medula Óssea , Células-Tronco Hematopoéticas , Reações Cruzadas , Nicho de Células-Tronco
3.
J Am Chem Soc ; 146(15): 10550-10558, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38584353

RESUMO

Implementing the synergistic effects between the metal and the ligand has successfully streamlined the energetics for CO2 activation and gained high catalytic activities, establishing the important breakthroughs in photocatalytic CO2 reduction. Herein, we describe a Ni(II) N-confused porphyrin complex (NiNCP) featuring an acidic N-H group. It is readily deprotonated and exists in an anion form during catalysis. Owing to this functional site, NiNCP gave rise to an outstanding turnover number (TON) as high as 217,000 with a 98% selectivity for CO2 reduction to CO, while the parent Ni(II) porphyrin (NiTPP) was found to be nearly inactive. Our mechanistic analysis revealed a nonclassical reaction pattern where CO2 was effectively activated via the attack of the Lewis-basic ligand. The resulting ligand-bound CO2 adduct could be further reduced to produce CO. This new metal-ligand synergistic effect is anticipated to inspire the design of highly active catalysts for small molecule activations.

4.
Small ; 20(28): e2312020, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38326093

RESUMO

Artificial photocatalytic CO2 reduction (CO2R) holds great promise to directly store solar energy into chemical bonds. The slow charge and mass transfer kinetics at the triphasic solid-liquid-gas interface calls for the rational design of heterogeneous photocatalysts concertedly boosting interfacial charge transfer, local CO2 concentration, and exposure of active sites. To meet these requirements, in this study heterostructures of CdS/MOL (MOL = metal-organic layer) furnishing different redox Co sites are fabricated for CO2R photocatalysts. It is found that the coordination environment of Co is key to photocatalytic activity. The best catalyst ensemble comprising ligand-chelated Co2+ with the bipyridine electron mediator demonstrates a high CO yield rate of 1523 µmol h-1 gcat -1, selectivity of 95.8% and TON of 1462.4, which are ranked among the best seen in literature. Comprehensive photochemical and electroanalytical characterizations attribute the high CO2R performance to the improved photocarrier separation and charge kinetics originated from the proper energy band alignment and coordination chemistry. This work highlights the construction of 2D heterostructures and modulation of transition metal coordination to expedite the charge kinetics in photocatalytic CO2 reduction.

5.
Small ; : e2406783, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39206610

RESUMO

Metal halide perovskites (MHPs) have undergone rapid development in the fields of solar cells, light diodes, lasing, photodetectors, etc. However, the MHPs still face significant challenges, such as poor stability and heterocompositing with other functional materials at the single nanoparticle level. Herein, the successful synthesis of well-dispersed CsPbBr3@TiO2 heterostructure nanocrystals (NCs) is reported, in which each heterostructure NC has only one CsPbBr3 with a precise anatase TiO2 coating ranging from asymmetric to symmetric. Due to the protection of anatase TiO2, CsPbBr3 shows dramatically improved chemical stability and photostability. More significantly, the synthesized CsPbBr3@TiO2 heterostructure NCs form a type II heterojunction, which strongly promoted efficient photogenerated carrier separation between anatase TiO2 and CsPbBr3, hence leading to improved optoelectronic activity. This study provides a robust avenue for synthesizing stable and highly efficient MHPs@metal oxide heterostructure NCs, paving the way for the practical application of all inorganic perovskites.

6.
Angew Chem Int Ed Engl ; 63(12): e202315922, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38287420

RESUMO

Breaking the D4h symmetry in the square-planar M-N4 configuration of macrocycle molecular catalysts has witnessed enhanced electrocatalytic activity, but at the expense of electrochemical stability. Herein, we hypothesize that the lability of the active Cu-N3 motifs in the N-confused copper (II) tetraphenylporphyrin (CuNCP) could be overcome by applying pulsed potential electrolysis (PPE) during electrocatalytic carbon dioxide reduction. We find that applying PPE can indeed enhance the CH4 selectivity on CuNCP by 3 folds to reach the partial current density of 170 mA cm-2 at >60 % Faradaic efficiency (FE) in flow cell. However, combined ex situ X-ray diffraction (XRD), transmission electron microscope (TEM), and in situ X-ray absorption spectroscopy (XAS), infrared (IR), Raman, scanning electrochemical microscopy (SECM) characterizations reveal that, in a prolonged time scale, the decomplexation of CuNCP is unavoidable, and the promoted water dissociation under high anodic bias with lowered pH and enriched protons facilitates successive hydrogenation of *CO on the irreversibly reduced Cu nanoparticles, leading to the improved CH4 selectivity. As a key note, this study signifies the adaption of electrolytic protocol to the catalyst structure for tailoring local chemical environment towards efficient CO2 reduction.

7.
Hum Brain Mapp ; 44(17): 6245-6257, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37837649

RESUMO

Rumination is closely linked to the onset and maintenance of major depressive disorder (MDD). Prior neuroimaging studies have identified the association between self-reported rumination trait and the functional coupling among a network of brain regions using resting-state functional magnetic resonance imaging (MRI). However, little is known about the underlying neural circuitry mechanism during active rumination in MDD. Degree centrality (DC) is a simple metric to denote network integration, which is critical for higher-order psychological processes such as rumination. During an MRI scan, individuals with MDD (N = 45) and healthy controls (HC, N = 46) completed a rumination state task. We examined the interaction effect between the group (MDD vs. HC) and condition (rumination vs. distraction) on vertex-wise DC. We further characterized the identified brain region's functional involvement with Neurosynth and BrainMap. Network-wise seed-based functional connectivity (FC) analysis was also conducted for the identified region of interest. Finally, exploratory correlation analysis was conducted between the identified region of interest's network FCs and self-reported in-scanner affect levels. We found that a left superior frontal gyrus (SFG) region, generally overlapped with the frontal eye field, showed a significant interaction effect. Further analysis revealed its involvement with executive functions. FCs between this region, the frontoparietal, and the dorsal attention network (DAN) also showed significant interaction effects. Furthermore, its FC to DAN during distraction showed a marginally significant negative association with in-scanner affect level at the baseline. Our results implicated an essential role of the left SFG in the rumination's underlying neural circuitry mechanism in MDD and provided novel evidence for the conceptualization of rumination in terms of impaired executive control.


Assuntos
Transtorno Depressivo Maior , Humanos , Encéfalo/diagnóstico por imagem , Córtex Pré-Frontal , Função Executiva , Lobo Frontal , Imageamento por Ressonância Magnética , Mapeamento Encefálico
8.
FASEB J ; 36(10): e22538, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36065631

RESUMO

Antipsychotic agents are clinically utilized to treat schizophrenia and other mental disorders. These drugs induce neurological and metabolic side effects, but their influence on blood vessels remains largely unknown. Here, we show that haloperidol, one of the most frequently prescribed antipsychotic agents, induces vascular defects in bone marrow. Acute haloperidol treatment results in vascular dilation that is specific to hematopoietic organs. This vessel dilation is associated with disruption of hematopoiesis and hematopoietic stem/progenitor cells (HSPCs), both of which are reversible after haloperidol withdrawal. Mechanistically, haloperidol treatment blocked the secretion of vascular endothelial growth factor A (VEGF-A) from HSPCs. Genetic blockade of VEGF-A secretion from hematopoietic cells or inhibition of VEGFR2 in endothelial cells result in similar vessel dilation in bone marrow during regeneration after irradiation and transplantation. Conversely, VEGF-A gain of function rescues the bone marrow vascular defects induced by haloperidol treatment and irradiation. Our work reveals an unknown effect of antipsychotic agents on the vasculature and hematopoiesis with potential implications for drug application in clinic.


Assuntos
Antipsicóticos , Fator A de Crescimento do Endotélio Vascular , Antipsicóticos/farmacologia , Células da Medula Óssea/metabolismo , Células Endoteliais/metabolismo , Haloperidol/metabolismo , Haloperidol/farmacologia , Hematopoese/fisiologia , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
Bipolar Disord ; 25(4): 289-300, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37161552

RESUMO

OBJECTIVE: Major depressive disorder (MDD) and bipolar disorder (BD) are considered whole-brain disorders with some common clinical and neurobiological features. It is important to investigate neural mechanisms to distinguish between the two disorders. However, few studies have explored the functional dysconnectivity between the two disorders from the whole brain level. METHODS: In this study, 117 patients with MDD, 65 patients with BD, and 116 healthy controls completed resting-state functional magnetic resonance imaging (R-fMRI) scans. Both edge-based network construction and large-scale network analyses were applied. RESULTS: Results found that both the BD and MDD groups showed decreased FC in the whole brain network. The shared aberrant network across patients involves the visual network (VN), sensorimotor network (SMN), dorsal attention network (DAN), and ventral attention network (VAN), which is related to the processing of external stimuli. The default mode network (DMN) and the limbic network (LN) abnormalities were only found in patients with MDD. Furthermore, results showed the highest decrease in edges of patients with MDD in between-network FC in SMN-VN, whereas in VAN-VN of patients with BD. CONCLUSIONS: Our findings indicated that both MDD and BD are extensive abnormal brain network diseases, mainly aberrant in those brain networks correlated to the processing of external stimuli, especially the attention network. Specific altered functional connectivity also was found in MDD and BD groups, respectively. These results may provide possible trait markers to distinguish the two disorders.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Bipolar/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos
10.
Crit Rev Food Sci Nutr ; 63(19): 3664-3682, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34694177

RESUMO

Bioactive peptides are specific peptide which usually contains 2-20 amino acid residues and actively exerts various functions and biological activities and ultimately affect health. Programmed cell deaths are some styles of cell death discovered in recent years, which is the key to tissue development and balance, eliminating excess, damaged or aging cells. More importantly, programmed cell death is a potential way to treat inflammatory diseases and cancer. In this review, through screening references from 2015 to present, we introduce the effect of bioactive peptides derived from food proteins on inflammatory diseases or cancer through regulating programmed cell deaths, including apoptosis, autophagy, pyroptosis, ferroptosis, and necroptosis. And this review also introduces the targets of these bioactive peptides to regulate programmed cell death. The purpose of this review is to help to expand the prospective applications of bioactive peptides in the field of inflammatory disease and cancer to provide some guidance.


Assuntos
Apoptose , Neoplasias , Humanos , Morte Celular , Piroptose , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Neoplasias/tratamento farmacológico
11.
Molecules ; 28(22)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38005308

RESUMO

Aromatic ketones are important pharmaceutical intermediates, especially the pyridin-2-yl-methanone motifs. Thus, synthetic methods for these compounds have gained extensive attention in the last few years. Transition metals catalyze the oxidation of Csp3-H for the synthesis of aromatic ketones, which is arresting. Here, we describe an efficient copper-catalyzed synthesis of pyridin-2-yl-methanones from pyridin-2-yl-methanes through a direct Csp3-H oxidation approach with water under mild conditions. Pyridin-2-yl-methanes with aromatic rings, such as substituted benzene, thiophene, thiazole, pyridine, and triazine, undergo the reaction well to obtain the corresponding products in moderate to good yields. Several controlled experiments are operated for the mechanism exploration, indicating that water participates in the oxidation process, and it is the single oxygen source in this transformation. The current work provides new insights for water-involving oxidation reactions.

12.
Angew Chem Int Ed Engl ; 62(28): e202305558, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37173611

RESUMO

Silicon semiconductor functionalized with molecular catalysts emerges as a promising cathode for photoelectrochemical (PEC) CO2 reduction reaction (CO2 RR). However, the limited kinetics and stabilities remains a major hurdle for the development of such composites. We herein report an assembling strategy of silicon photocathodes via chemically grafting a conductive graphene layer onto the surface of n+ -p Si followed by catalyst immobilization. The covalently-linked graphene layer effectively enhances the photogenerated carriers transfer between the cathode and the reduction catalyst, and improves the operating stability of the electrode. Strikingly, we demonstrate that altering the stacking configuration of the immobilized cobalt tetraphenylporphyrin (CoTPP) catalyst through calcination can further enhance the electron transfer rate and the PEC performance. At the end, the graphene-coated Si cathode immobilized with CoTPP catalyst managed to sustain a stable 1-Sun photocurrent of -1.65 mA cm-2 over 16 h for CO production in water at a near neutral potential of -0.1 V vs. reversible hydrogen electrode. This represents a remarkable improvement of PEC CO2 RR performance in contrast to the reported photocathodes functionalized with molecular catalysts.

13.
Angew Chem Int Ed Engl ; 62(44): e202312113, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37671746

RESUMO

Hybrid organic/inorganic composites with the organic phase tailored to modulate local chemical environment at the Cu surface arise as an enchanting category of catalysts for electrocatalytic CO2 reduction reaction (CO2 RR). A fundamental understanding on how the organics of different functionality, polarity, and hydrophobicity affect the reaction path is, however, still lacking to guide rational catalyst design. Herein, polypyrrole (PPy) and polyaniline (PANI) manifesting different Brønsted basicity are compared for their regulatory roles on the CO2 RR pathways regarding *CO coverage, proton source and interfacial polarity. Concerted efforts from in situ IR, Raman and operando modelling unveil that at the PPy/Cu interface with limited *CO coverage, hydridic *H produced by the Volmer step favors the carbon hydrogenation of *CO to form *CHO through a Tafel process; Whereas at the PANI/Cu interface with concentrated CO2 and high *CO coverage, protonic H+ shuttled through the benzenoid -NH- protonates the oxygen of *CO, yielding *COH for asymmetric coupling with nearby *CO to form *OCCOH under favored energetics. As a result of the tailored chemical environment, the restructured PANI/Cu composite demonstrates a high partial current density of 0.41 A cm-2 at a maximal Faraday efficiency of 67.5 % for ethylene production, ranking among states of the art.

14.
Small ; 18(9): e2106260, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34913578

RESUMO

The development of high-performance multifunctional electrocatalysts operating in the same electrolyte is key to reduce the material and process costs of renewable energy conversion and storage devices. Herein, the fabrication of freestanding integral electrodes by combining multivariate electrospinning with surface metal organic framework functionalization to arrest pyrolytic emissions from fiber interior is reported, resulting in the expression of rich active sites with controlled composition, for example, the tunable Co-P coordination. The as-fabricated electrode of CoP@CF-900, when used as both the cathode and anode for overall water splitting, is able to deliver 200 mA cm-2 at a cell voltage of 1.89 V, significantly outshining the Pt/C‖RuO2 couple; when used as the air cathode for a zinc-air battery, is able to operate more than 150 h at 10 mA cm-2 with a nearly constant round-trip energy efficiency of ≈60%, also outperforming the Pt/C+RuO2 benchmark. The activity and kinetics origin of the superb multi-functionality is further elucidated through extensive electroanalytical, post-mortem, and operando characterizations, which underscore the construction of robust integral electrodes through synergistic structure and composition engineering.


Assuntos
Fontes de Energia Elétrica , Eletrólitos , Domínio Catalítico , Eletrodos , Zinco
15.
Bioorg Med Chem Lett ; 64: 128695, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35314326

RESUMO

The dramatic rise in drug resistance accelerated the desire for new antibacterial agents to safeguard human health. This work constructed a novel type of aloe emodin-hybridized sulfonamide aminophosphates as unique potential antibacterial agents. The biological assay revealed that some target hybrids possessed potent inhibitory activity. Particularly, ethyl aminophosphate-hybridized sulfadiazine aloe emodin 7a (EASA-7a) not only displayed preponderant antibacterial efficiency against drug-resistant E. faecalis at low concentration as 0.25 µg/mL but also possessed strong bacteriostatic capacity and low propensity to develop resistance toward E. faecalis. The weak hemolysis toward human red blood cells and efficient biofilm-disruptive ability further implied the therapeutic potential of EASA-7a. Preliminary studies disclosed that the excellent antibacterial behavior of EASA-7a might be attributed to its capacity to permeate and depolarize the bacterial membrane, as well as promote ROS accumulation and intercalate with DNA. These findings manifested that EASA-7a was worthy of further development to combat life-threatening bacterial infections.


Assuntos
Enterococcus faecalis , Substâncias Intercalantes , Antraquinonas/farmacologia , Antibacterianos/farmacologia , Humanos , Sulfanilamida
16.
Bioorg Chem ; 127: 106035, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35870413

RESUMO

Aloe emodin-conjugated sulfonyl hydrazones were designed and synthesized as novel type of antibacterial modulators. Aloe emodin benzenesulfonyl hydrazone 5a (AEBH-5a) was preponderant for the treatment of S. aureus 25923 (MIC = 0.5 µg/mL) over norfloxacin and presented high selectivity between bacterial membranes and mammalian membranes. Especially, AEBH-5a could eliminate the formed biofilms and relieve the development of S. aureus 25923 resistance. The antibacterial mechanism of AEBH-5a from extracellularity to intracellularity illustrated that AEBH-5a could destroy bacterial membrane integrity, leading to the leakage of protein and nucleic acid. Besides, AEBH-5a could not only interact with DNA and induce oxidative stress but also inhibit lactate dehydrogenase (LDH) activity as well as render metabolic inactivation. In silico ADME studies prediction of AEBH-5a revealed a favorable bioavailability score and prominent drug-likeness profile. This research showed that the multifaceted synergistic effect initiated by aloe emodin-conjugated sulfonyl hydrazones is a reasonable and effective tactic to combat menacing bacterial infections.


Assuntos
Emodina , Staphylococcus aureus Resistente à Meticilina , Animais , Antraquinonas , Antibacterianos/farmacologia , Bactérias , Emodina/farmacologia , Hidrazonas/farmacologia , Mamíferos , Staphylococcus aureus
17.
Acta Pharmacol Sin ; 43(7): 1793-1802, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34754093

RESUMO

Osteoarthritis (OA) is the most prevalent chronic degenerative joint disease with few treatment options. The pathogenesis of OA is characterized by sustained inflammation, oxidative stress and chondrocyte apoptosis that eventually lead to cartilage degradation and joint dysfunction. In the present study, we identified a synthetic triterpenoid CDDO-Im(1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl] imidazole) as an activator of Nrf2 (nuclear factor erythroid 2-related factor 2) that displayed strong anti-OA effects. We showed that CDDO-Im (20 nM) significantly alleviated TNF-α-induced apoptosis of primary human chondrocytes and extracellular matrix degradation. In a mouse OA model incurred by DMM (destabilization of medial meniscus), administration of CDDO-Im (2.5 mg/kg, ip, every other day for 8 weeks) effectively reduced knee joint cartilage erosion and serum levels of inflammatory cytokines IL-1ß and IL-6. We revealed that CDDO-Im (20 nM) significantly enhanced autophagy activities in chondrocytes, whereas the autophagy inhibition by chloroquine (CQ, 50 µM) or 3-methyladenine (3-MA, 5 mM) abrogated the anti-apoptosis and chondroprotective effects of CDDO-Im in TNF-α-treated chondrocytes. Moreover, we confirmed that CDDO-Im (1-20 nM) dose-dependently activated Nrf2 pathway in TNF-α-treated chondrocytes, and its chondroprotective and autophagy-enhancing effects were significantly diminished when Nrf2 signaling was blocked by Nrf2 inhibitor ML385 (20 µM) or siRNA-mediated Nrf2 knockdown. Together, our results demonstrate that CDDO-Im exhibits prominent chondroprotective and anti-OA activities owing to its Nrf2 activation and autophagy-enhancing properties, which might provide new insights into the strategies of OA clinical prevention and treatment.


Assuntos
Fator 2 Relacionado a NF-E2 , Osteoartrite , Animais , Camundongos , Autofagia , Condrócitos , Imidazóis/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Ácido Oleanólico/análogos & derivados , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
18.
J Card Surg ; 37(12): 5575-5578, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36378948

RESUMO

Acute type A aortic dissection (ATAAD) is a life-threatening vascular disease. We report a case of ATAAD treated with interventional therapy using 3D-printing assisted pre-windowing coated stent combined with in situ window-opening technology. There were few complications and the patient experienced an uneventful recovery.


Assuntos
Dissecção Aórtica , Stents , Humanos , Resultado do Tratamento , Dissecção Aórtica/cirurgia , Impressão Tridimensional , Doença Aguda , Estudos Retrospectivos
19.
Nano Lett ; 21(17): 7354-7362, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34448389

RESUMO

The deployment of Li metal batteries has been significantly tethered by uncontrollable lithium dendrite growth, especially in heavy-duty operations. Herein, we implement an in situ surface transformation tactic exploiting the vapor-phase solid-gas reaction to construct an artificial solid-electrolyte interphase (SEI) of Li2Se on Li metal anodes. The conformal Li2Se layer with high ionic diffusivity but poor electron conductivity effectively restrains the Li/Li+ redox conversion to the Li/Li2Se interface, and further renders a smooth and chunky Li deposition through homogenized Li+ flux and promoted redox kinetics. Consequently, the as-fabricated Li@Li2Se electrodes demonstrate superb cycling stability in symmetric cells at both high capacity and current density. The merits of inhibited dendrite growth and side reactions on the stabilized Li@Li2Se anode are further manifested in Li-O2 batteries, greatly extending the cycling stability and energy efficiency.

20.
Molecules ; 28(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36615393

RESUMO

Inflammation accompanies hepatic dysfunction resulting from tissue oxidative damage. Naringenin (Nar), a natural flavanone, has known antioxidant and anti-inflammatory activities, but its mechanism of action in the regulation of liver dysfunction requires further investigation. In this study, the role of naringenin in lipopolysaccharide (LPS)-induced hepatic oxidative stress and inflammation was explored, as well as its mechanism by transcriptome sequencing. The results indicated that compared with the LPS group, Nar treatment caused a significant increase in the mRNA levels of antioxidant factors glutamate-cysteine ligase catalytic subunit (GCLC) and glutamate-cysteine ligase modifier subunit (GCLM), yet the expression of related inflammatory factors (MCP1, TNFα, IL-1ß and IL-6) showed less of an increase. RNA sequencing identified 36 differentially expressed lncRNAs and 603 differentially expressed mRNAs. KEGG enrichment analysis indicated that oxidative stress and inflammation pathways are meticulously linked with naringenin treatment. The Co-lncRNA-mRNA network was also constructed. Tissue expression profiles showed that lncRNA played a higher role in the liver. Subsequently, expression levels of inflammatory factors indicated that lncRNAs and target mRNAs were significantly reduced after naringenin treatment in mouse liver AML12 cells and obese mouse. These results suggest that naringenin helps to prevent liver dysfunction through the regulation of lncRNA-mRNA axis to reduce oxidative stress and inflammatory factors.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Flavanonas , Hepatopatias , RNA Longo não Codificante , Camundongos , Masculino , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/metabolismo , Glutamato-Cisteína Ligase/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo , Estresse Oxidativo , Flavanonas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA