Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 26(42): 425403, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26421360

RESUMO

Titania nanotubes were prepared by a simple hydrothermal route. Their electrochemical performance has been examined in detail and compared to TiO2(B) nanoparticles, TiO2 anatase and P25 titania nanoparticles. The cycling and rate performance of TiO2 nanotubes is superior to both types of nanoparticles, and it can be further improved by an in situ titanium precursor treatment, which results in the formation of TiO2 nanoparticles on/between the nanotubes. The obtained specific capacity after 200 cycles at 0.2 A g(-1) charge/discharge rate remained above 130 mAh g(-1). The enhanced lithium storage properties of these samples can be attributed to their unique morphology and crystal structure.


Assuntos
Lítio/química , Nanocompostos/química , Nanotubos/química , Titânio/química , Fontes de Energia Elétrica , Eletrodos
2.
ACS Appl Mater Interfaces ; 6(16): 13478-86, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-25083941

RESUMO

SnO2-based electrodes for lithium ion batteries (LIBs) typically exhibit high initial specific capacity but poor cycling performance. A possible strategy to improve the cycling performance is to prepare nanocomposites containing SnO2. Here we demonstrate a straightforward method to prepare composites containing SnOx and CuxO by a simple chemical treatment of the LIB electrode on copper foil. The in situ formation of a multiphase composite results in a dramatic improvement in the cycling performance, so that specific capacities exceeding 580 and 800 mA·h/g can be obtained after 70 charge/discharge cycles for CuxO/SnOx@CNT and CuxO/SnOx@SnO2/CNT electrodes, respectively (compared to <100 mA·h/g for pure SnO2). The capacity retention achieved at the 70th cycle compared to the 2nd cycle was 96% for the CuxO/SnOx@CNT electrode. The mechanisms responsible for the formation of a composite material and the improvement in the performance are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA