Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Mol Cell ; 83(17): 3108-3122.e13, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37597513

RESUMO

General protein folding is mediated by chaperones that utilize ATP hydrolysis to regulate client binding and release. Zinc-finger protein 1 (Zpr1) is an essential ATP-independent chaperone dedicated to the biogenesis of eukaryotic translation elongation factor 1A (eEF1A), a highly abundant GTP-binding protein. How Zpr1-mediated folding is regulated to ensure rapid Zpr1 recycling remains an unanswered question. Here, we use yeast genetics and microscopy analysis, biochemical reconstitution, and structural modeling to reveal that folding of eEF1A by Zpr1 requires GTP hydrolysis. Furthermore, we identify the highly conserved altered inheritance of mitochondria 29 (Aim29) protein as a Zpr1 co-chaperone that recognizes eEF1A in the GTP-bound, pre-hydrolysis conformation. This interaction dampens Zpr1⋅eEF1A GTPase activity and facilitates client exit from the folding cycle. Our work reveals that a bespoke ATP-independent chaperone system has mechanistic similarity to ATPase chaperones but unexpectedly relies on client GTP hydrolysis to regulate the chaperone-client interaction.


Assuntos
Proteínas de Transporte , GTP Fosfo-Hidrolases , Chaperonas Moleculares , Fatores de Alongamento de Peptídeos , Proteínas de Saccharomyces cerevisiae , Humanos , Trifosfato de Adenosina , GTP Fosfo-Hidrolases/genética , Guanosina Trifosfato , Chaperonas Moleculares/genética , Fatores de Alongamento de Peptídeos/metabolismo , Saccharomyces cerevisiae , Proteínas de Transporte/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Dobramento de Proteína
2.
Mol Cell ; 83(2): 252-265.e13, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36630955

RESUMO

The conserved regulon of heat shock factor 1 in budding yeast contains chaperones for general protein folding as well as zinc-finger protein Zpr1, whose essential role in archaea and eukaryotes remains unknown. Here, we show that Zpr1 depletion causes acute proteotoxicity driven by biosynthesis of misfolded eukaryotic translation elongation factor 1A (eEF1A). Prolonged Zpr1 depletion leads to eEF1A insufficiency, thereby inducing the integrated stress response and inhibiting protein synthesis. Strikingly, we show by using two distinct biochemical reconstitution approaches that Zpr1 enables eEF1A to achieve a conformational state resistant to protease digestion. Lastly, we use a ColabFold model of the Zpr1-eEF1A complex to reveal a folding mechanism mediated by the Zpr1's zinc-finger and alpha-helical hairpin structures. Our work uncovers the long-sought-after function of Zpr1 as a bespoke chaperone tailored to the biogenesis of one of the most abundant proteins in the cell.


Assuntos
Proteínas de Transporte , Chaperonas Moleculares , Proteínas de Transporte/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Biossíntese de Proteínas , Zinco/metabolismo , Dedos de Zinco , Fator 1 de Elongação de Peptídeos/metabolismo
3.
Mol Cell ; 74(5): 891-908.e10, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31006537

RESUMO

Cells respond to nutrient stress by trafficking cytosolic contents to lysosomes for degradation via macroautophagy. The endoplasmic reticulum (ER) serves as an initiation site for autophagosomes and is also remodeled in response to nutrient stress through ER-phagy, a form of selective autophagy. Quantitative proteome analysis during nutrient stress identified an unstudied single-pass transmembrane ER protein, TEX264, as an ER-phagy receptor. TEX264 uses an LC3-interacting region (LIR) to traffic into ATG8-positive puncta that often initiate from three-way ER tubule junctions and subsequently fuse with lysosomes. Interaction and proximity biotinylation proteomics identified a cohort of autophagy regulatory proteins and cargo adaptors located near TEX264 in an LIR-dependent manner. Global proteomics and ER-phagy flux analysis revealed the stabilization of a cohort of ER proteins in TEX264-/- cells during nutrient stress. This work reveals TEX264 as an unrecognized ER-phagy receptor that acts independently of other candidate ER-phagy receptors to remodel the ER during nutrient stress.


Assuntos
Família da Proteína 8 Relacionada à Autofagia/genética , Proteínas Relacionadas à Autofagia/genética , Autofagia/genética , Retículo Endoplasmático/genética , Proteínas de Membrana/metabolismo , Animais , Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Células COS , Chlorocebus aethiops , Citosol/metabolismo , Estresse do Retículo Endoplasmático/genética , Células HCT116 , Células HEK293 , Humanos , Lisossomos/genética , Lisossomos/metabolismo , Proteínas de Membrana/genética , Nutrientes/metabolismo , Transporte Proteico/genética , Proteoma/genética
4.
Mol Cell ; 63(1): 60-71, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27320198

RESUMO

Despite its eponymous association with the heat shock response, yeast heat shock factor 1 (Hsf1) is essential even at low temperatures. Here we show that engineered nuclear export of Hsf1 results in cytotoxicity associated with massive protein aggregation. Genome-wide analysis revealed that Hsf1 nuclear export immediately decreased basal transcription and mRNA expression of 18 genes, which predominately encode chaperones. Strikingly, rescuing basal expression of Hsp70 and Hsp90 chaperones enabled robust cell growth in the complete absence of Hsf1. With the exception of chaperone gene induction, the vast majority of the heat shock response was Hsf1 independent. By comparative analysis of mammalian cell lines, we found that only heat shock-induced but not basal expression of chaperones is dependent on the mammalian Hsf1 homolog (HSF1). Our work reveals that yeast chaperone gene expression is an essential housekeeping mechanism and provides a roadmap for defining the function of HSF1 as a driver of oncogenesis.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Animais , Sistemas CRISPR-Cas , Linhagem Celular , Proteínas de Ligação a DNA/genética , Células-Tronco Embrionárias/metabolismo , Fibroblastos/metabolismo , Regulação Fúngica da Expressão Gênica , Redes Reguladoras de Genes , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Fatores de Transcrição de Choque Térmico , Proteínas de Choque Térmico/genética , Homeostase , Camundongos da Linhagem 129 , Camundongos Endogâmicos CBA , Agregados Proteicos , Mapas de Interação de Proteínas , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Tempo , Fatores de Transcrição/genética , Transfecção
5.
Cell ; 134(4): 634-45, 2008 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-18724936

RESUMO

Tail-anchored (TA) proteins, defined by the presence of a single C-terminal transmembrane domain (TMD), play critical roles throughout the secretory pathway and in mitochondria, yet the machinery responsible for their proper membrane insertion remains poorly characterized. Here we show that Get3, the yeast homolog of the TA-interacting factor Asna1/Trc40, specifically recognizes TMDs of TA proteins destined for the secretory pathway. Get3 recognition represents a key decision step, whose loss can lead to misinsertion of TA proteins into mitochondria. Get3-TA protein complexes are recruited for endoplasmic reticulum (ER) membrane insertion by the Get1/Get2 receptor. In vivo, the absence of Get1/Get2 leads to cytosolic aggregation of Get3-TA complexes and broad defects in TA protein biogenesis. In vitro reconstitution demonstrates that the Get proteins directly mediate insertion of newly synthesized TA proteins into ER membranes. Thus, the GET complex represents a critical mechanism for ensuring efficient and accurate targeting of TA proteins.


Assuntos
Retículo Endoplasmático/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Proteínas Adaptadoras de Transporte Vesicular , Adenosina Trifosfatases , Proteínas de Membrana/metabolismo , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/metabolismo
6.
Mol Cell ; 59(3): 372-81, 2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-26166702

RESUMO

Selective autophagy eliminates protein aggregates, damaged organelles, and other targets that otherwise accumulate and cause disease. Autophagy receptors mediate selectivity by connecting targets to the autophagosome membrane. It has remained unknown whether receptors perform additional functions. Here, we show that in yeast certain receptor-bound targets activate Atg1, the kinase that controls autophagosome formation. Specifically, we found that in nutrient-rich conditions, Atg1 is active only in a multisubunit complex comprising constitutive protein aggregates, their autophagy receptor, and a scaffold protein, Atg11. Development of a cell-free assay for Atg1-mediated phosphorylation enabled us to activate Atg1 with purified receptor-bound aggregates and Atg11. Another target, damaged peroxisomes, also activated Atg1 using Atg11 with a distinct receptor. Our work reveals that receptor-target complexes activate Atg1 to drive formation of selective autophagosomes. This regulatory logic is a key similarity between selective autophagy and bulk autophagy, which is initiated by a distinct Atg1 activation mechanism during starvation.


Assuntos
Aminopeptidases/metabolismo , Proteínas Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Proteínas de Transporte Vesicular/metabolismo , Autofagia , Proteínas Relacionadas à Autofagia , Sistema Livre de Células , Ativação Enzimática , Técnicas In Vitro , Peroxissomos/metabolismo , Fosforilação , Agregados Proteicos , Saccharomyces cerevisiae/enzimologia
7.
PLoS Biol ; 17(4): e2007044, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30933966

RESUMO

The power of forward genetics in yeast is the foundation on which the field of autophagy research firmly stands. Complementary work on autophagy in higher eukaryotes has revealed both the deep conservation of this process, as well as novel mechanisms by which autophagy is regulated in the context of development, immunity, and neuronal homeostasis. The recent emergence of new clustered regularly interspaced palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)-based technologies has begun facilitating efforts to define novel autophagy factors and pathways by forward genetic screening in mammalian cells. Here, we set out to develop an expanded toolkit of autophagy reporters amenable to CRISPR/Cas9 screening. Genome-wide screening of our reporters in mammalian cells recovered virtually all known autophagy-related (ATG) factors as well as previously uncharacterized factors, including vacuolar protein sorting 37 homolog A (VPS37A), transmembrane protein 251 (TMEM251), amyotrophic lateral sclerosis 2 (ALS2), and TMEM41B. To validate this data set, we used quantitative microscopy and biochemical analyses to show that 1 novel hit, TMEM41B, is required for phagophore maturation. TMEM41B is an integral endoplasmic reticulum (ER) membrane protein distantly related to the established autophagy factor vacuole membrane protein 1 (VMP1), and our data show that these two factors play related, albeit not fully overlapping, roles in autophagosome biogenesis. In sum, our work uncovers new ATG factors, reveals a malleable network of autophagy receptor genetic interactions, and provides a valuable resource (http://crispr.deniclab.com) for further mining of novel autophagy mechanisms.


Assuntos
Autofagia/genética , Autofagia/fisiologia , Proteínas de Membrana/genética , Sistemas CRISPR-Cas , Retículo Endoplasmático/metabolismo , Humanos , Células K562 , Proteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia , Transporte Proteico
9.
Nature ; 512(7515): 441-4, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-25043001

RESUMO

Hundreds of tail-anchored proteins, including soluble N-ethylmaleimide-sensitive factor attachment receptors (SNAREs) involved in vesicle fusion, are inserted post-translationally into the endoplasmic reticulum membrane by a dedicated protein-targeting pathway. Before insertion, the carboxy-terminal transmembrane domains of tail-anchored proteins are shielded in the cytosol by the conserved targeting factor Get3 (in yeast; TRC40 in mammals). The Get3 endoplasmic-reticulum receptor comprises the cytosolic domains of the Get1/2 (WRB/CAML) transmembrane complex, which interact individually with the targeting factor to drive a conformational change that enables substrate release and, as a consequence, insertion. Because tail-anchored protein insertion is not associated with significant translocation of hydrophilic protein sequences across the membrane, it remains possible that Get1/2 cytosolic domains are sufficient to place Get3 in proximity with the endoplasmic-reticulum lipid bilayer and permit spontaneous insertion to occur. Here we use cell reporters and biochemical reconstitution to define mutations in the Get1/2 transmembrane domain that disrupt tail-anchored protein insertion without interfering with Get1/2 cytosolic domain function. These mutations reveal a novel Get1/2 insertase function, in the absence of which substrates stay bound to Get3 despite their proximity to the lipid bilayer; as a consequence, the notion of spontaneous transmembrane domain insertion is a non sequitur. Instead, the Get1/2 transmembrane domain helps to release substrates from Get3 by capturing their transmembrane domains, and these transmembrane interactions define a bona fide pre-integrated intermediate along a facilitated route for tail-anchor entry into the lipid bilayer. Our work sheds light on the fundamental point of convergence between co-translational and post-translational endoplasmic-reticulum membrane protein targeting and insertion: a mechanism for reducing the ability of a targeting factor to shield its substrates enables substrate handover to a transmembrane-domain-docking site embedded in the endoplasmic-reticulum membrane.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Retículo Endoplasmático/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Proteínas Adaptadoras de Transporte Vesicular/química , Proteínas Adaptadoras de Transporte Vesicular/genética , Adenosina Trifosfatases/metabolismo , Sítios de Ligação , Retículo Endoplasmático/química , Retículo Endoplasmático/enzimologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Membranas Intracelulares/química , Membranas Intracelulares/enzimologia , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Complexos Multiproteicos/química , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação , Ligação Proteica , Estrutura Terciária de Proteína/genética , Transporte Proteico/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
10.
Proc Natl Acad Sci U S A ; 114(7): E1158-E1167, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28154131

RESUMO

Autophagy plays a central role in the DNA damage response (DDR) by controlling the levels of various DNA repair and checkpoint proteins; however, how the DDR communicates with the autophagy pathway remains unknown. Using budding yeast, we demonstrate that global genotoxic damage or even a single unrepaired double-strand break (DSB) initiates a previously undescribed and selective pathway of autophagy that we term genotoxin-induced targeted autophagy (GTA). GTA requires the action primarily of Mec1/ATR and Rad53/CHEK2 checkpoint kinases, in part via transcriptional up-regulation of central autophagy proteins. GTA is distinct from starvation-induced autophagy. GTA requires Atg11, a central component of the selective autophagy machinery, but is different from previously described autophagy pathways. By screening a collection of ∼6,000 yeast mutants, we identified genes that control GTA but do not significantly affect rapamycin-induced autophagy. Overall, our findings establish a pathway of autophagy specific to the DNA damage response.


Assuntos
Autofagia/genética , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Saccharomyces cerevisiae/genética , Transdução de Sinais/genética , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2/genética , Quinase do Ponto de Checagem 2/metabolismo , Reparo do DNA , DNA Fúngico/genética , DNA Fúngico/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
11.
Mol Cell ; 42(6): 715-7, 2011 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-21700217

RESUMO

Gauss et al. (2011) present evidence that an endoplasmic reticulum (ER) sugar-removing enzyme with a folding sensor subunit enables a stochastic quality control mechanism, which marks with increasing probability misfolded glycoproteins for destruction the longer they reside in the ER.

12.
Mol Cell ; 43(5): 738-50, 2011 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21835666

RESUMO

Tail-anchored (TA) proteins access the secretory pathway via posttranslational insertion of their C-terminal transmembrane domain into the endoplasmic reticulum (ER). Get3 is an ATPase that delivers TA proteins to the ER by interacting with the Get1-Get2 transmembrane complex, but how Get3's nucleotide cycle drives TA protein insertion remains unclear. Here, we establish that nucleotide binding to Get3 promotes Get3-TA protein complex formation by recruiting Get3 to a chaperone that hands over TA proteins to Get3. Biochemical reconstitution and mutagenesis reveal that the Get1-Get2 complex comprises the minimal TA protein insertion machinery with functionally critical cytosolic regions. By engineering a soluble heterodimer of Get1-Get2 cytosolic domains, we uncover the mechanism of TA protein release from Get3: Get2 tethers Get3-TA protein complexes into proximity with the ATPase-dependent, substrate-releasing activity of Get1. Lastly, we show that ATP enhances Get3 dissociation from the membrane, thus freeing Get1-Get2 for new rounds of substrate insertion.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/química , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Lipossomos , Proteínas de Membrana/genética , Transporte Proteico , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Mol Cell ; 40(1): 159-71, 2010 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-20850366

RESUMO

Tail-anchored (TA) proteins are posttranslationally inserted into either the endoplasmic reticulum (ER) or the mitochondrial outer membrane. The C-terminal transmembrane domains (TMDs) of TA proteins enable their many essential cellular functions by specifying the membrane target, but how cells process these targeting signals is poorly understood. Here, we reveal the composition of a conserved multiprotein TMD recognition complex (TRC) and show that distinct TRC subunits recognize the two types of TMD signals. By engineering mutations in a mitochondrial TMD, we switch over its TRC subunit recognition, thus leading to its misinsertion into the ER. Biochemical reconstitution with purified components demonstrates that TRC tethers and enzymatically activates Get3 to selectively hand off ER-bound TA proteins to Get3. Thus, ER-bound TA proteins are sorted at the top of a TMD chaperone cascade that culminates with the formation of Get3-TA protein complexes, which are recruited to the ER membrane for insertion.


Assuntos
Retículo Endoplasmático/metabolismo , Chaperonas Moleculares/metabolismo , Sinais Direcionadores de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Proteínas de Transporte/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas de Membrana , Proteínas Mitocondriais/metabolismo , Chaperonas Moleculares/genética , Dados de Sequência Molecular , Complexos Multiproteicos , Mutação , Subunidades Proteicas , Transporte Proteico , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina/metabolismo
14.
Trends Biochem Sci ; 37(10): 411-7, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22951232

RESUMO

Many eukaryotic membrane proteins have a single C-terminal transmembrane domain that anchors them to a variety of organelles in secretory and endocytic pathways. These tail-anchored (TA) proteins are post-translationally inserted into the endoplasmic reticulum by molecular mechanisms that have long remained mysterious. This review describes how, in just the past 5 years, intense research by a handful of laboratories has led to identification of all the key components of one such mechanism, the guided entry of TA proteins (GET) pathway, which is conserved from yeast to man. The GET pathway is both surprisingly complicated and yet more experimentally tractable than most other membrane insertion mechanisms, and is rapidly revealing new fundamental concepts in membrane protein biogenesis.


Assuntos
Proteínas de Membrana/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Proteínas de Membrana/genética , Processamento de Proteína Pós-Traducional
15.
Mol Cell ; 32(6): 870-7, 2008 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-19111666

RESUMO

The endoplasmic reticulum (ER) must target potentially toxic misfolded proteins for retrotranslocation and proteasomal degradation while avoiding destruction of productive folding intermediates. For luminal proteins, this discrimination typically depends not only on the folding status of a polypeptide, but also on its glycosylation state. Two putative sugar binding proteins, Htm1p and Yos9p, are required for degradation of misfolded glycoproteins, but the nature of the glycan degradation signal and how such signals are generated and decoded remains unclear. Here we characterize Yos9p's oligosaccharide-binding specificity and find that it recognizes glycans containing terminal alpha1,6-linked mannose residues. We also provide evidence in vivo that a terminal alpha1,6-linked mannose-containing oligosaccharide is required for degradation and that Htm1p acts upstream of Yos9p to mediate the generation of such sugars. This strategy of marking potential substrates by Htm1p and decoding the signal by Yos9p is well suited to provide a proofreading mechanism that enhances substrate specificity.


Assuntos
Retículo Endoplasmático/metabolismo , Polissacarídeos/metabolismo , Processamento de Proteína Pós-Traducional , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Sequência de Carboidratos , Proteínas de Transporte/química , Proteínas de Transporte/isolamento & purificação , Proteínas de Transporte/metabolismo , Glucosamina/metabolismo , Manose , Manosidases/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Polissacarídeos/química , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
Elife ; 112022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35404228

RESUMO

Autophagy receptor (or adaptor) proteins facilitate lysosomal destruction of various organelles in response to cellular stress, including nutrient deprivation. To what extent membrane-resident autophagy receptors also respond to organelle-restricted cues to induce selective autophagy remains poorly understood. We find that latent activation of the yeast pexophagy receptor Atg36 by the casein kinase Hrr25 in rich media is repressed by the ATPase activity of Pex1/6, the catalytic subunits of the exportomer AAA+ transmembrane complex enabling protein import into peroxisomes. Quantitative proteomics of purified Pex3, an obligate Atg36 coreceptor, support a model in which the exportomer tail anchored to the peroxisome membrane represses Atg36 phosphorylation on Pex3 without assistance from additional membrane factors. Indeed, we reconstitute inhibition of Atg36 phosphorylation in vitro using soluble Pex1/6 and define an N-terminal unstructured region of Atg36 that enables regulation by binding to Pex1. Our findings uncover a mechanism by which a compartment-specific AAA+ complex mediating organelle biogenesis and protein quality control staves off induction of selective autophagy.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Autofagia/fisiologia , Proteínas Relacionadas à Autofagia/metabolismo , Caseína Quinase I/metabolismo , Macroautofagia , Proteínas de Membrana/metabolismo , Peroxinas/genética , Peroxinas/metabolismo , Peroxissomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
J Cell Biol ; 220(5)2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33877288

RESUMO

In mammals, tail-anchored (TA) proteins that are posttranslationally captured by the chaperone SGTA are triaged by the BAG6 complex into one of two fates: handoff to an ER targeting factor for membrane insertion or polyubiquitination for destruction by the proteasome. In this issue, Culver and Mariappan (2021. J. Cell Biol.https://doi.org/10.1083/jcb.202004086) show that a fraction of newly synthesized TA proteins is polyubiquitinated in HEK293 cells independently of the BAG6 complex yet evades proteasomal degradation by undergoing deubiquitination en route to becoming stably inserted into the ER membrane.


Assuntos
Chaperonas Moleculares , Complexo de Endopeptidases do Proteassoma , Animais , Citosol/metabolismo , Células HEK293 , Humanos , Chaperonas Moleculares/genética , Ubiquitinação
18.
Mol Biol Cell ; 32(17): 1557-1564, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34191542

RESUMO

Aneuploid yeast cells are in a chronic state of proteotoxicity, yet do not constitutively induce the cytosolic unfolded protein response, or heat shock response (HSR) by heat shock factor 1 (Hsf1). Here, we demonstrate that an active environmental stress response (ESR), a hallmark of aneuploidy across different models, suppresses Hsf1 induction in models of single-chromosome gain. Furthermore, engineered activation of the ESR in the absence of stress was sufficient to suppress Hsf1 activation in euploid cells by subsequent heat shock while increasing thermotolerance and blocking formation of heat-induced protein aggregates. Suppression of the ESR in aneuploid cells resulted in longer cell doubling times and decreased viability in the presence of additional proteotoxicity. Last, we show that in euploids, Hsf1 induction by heat shock is curbed by the ESR. Strikingly, we found a similar relationship between the ESR and the HSR using an inducible model of aneuploidy. Our work explains a long-standing paradox in the field and provides new insights into conserved mechanisms of proteostasis with potential relevance to cancers associated with aneuploidy.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , Adaptação Biológica/genética , Aneuploidia , Proteínas de Ligação a DNA/genética , Fatores de Transcrição de Choque Térmico/genética , Proteínas de Choque Térmico/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia , Fatores de Transcrição/genética , Resposta a Proteínas não Dobradas/genética
19.
Autophagy ; 16(5): 969-970, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32150508

RESUMO

In budding yeast, macroautophagy/autophagy is required for cells to enter into the meiotic divisions. Our recent publication showed that autophagy is also required for meiotic exit. Inhibition of autophagy as cells enter into the meiotic divisions results in additional rounds of spindle formation, spindle elongation, and aberrant chromosome segregation leading to cell death. Under these conditions, the meiosis II-specific cyclin Clb3 is absent, and two substrates of the anaphase-promoting complex/cyclosome (APC/C) persist into the additional divisions instead of being degraded after meiosis II. We found that the translational repressor Rim4 is a substrate of autophagy, which could explain these observations through its known role in repressing synthesis of Clb3 and the meiosis-specific co-activator of the APC/C, Ama1. Combined, these results provide new mechanistic insight into the control of meiotic exit through timed autophagic degradation of a master regulator of gene expression.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Autofagia/fisiologia , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ciclossomo-Complexo Promotor de Anáfase/genética , Ciclina B/genética , Meiose/fisiologia
20.
Dev Cell ; 52(2): 141-151.e5, 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31991104

RESUMO

We explored the potential for autophagy to regulate budding yeast meiosis. Following pre-meiotic DNA replication, we blocked autophagy by chemical inhibition of Atg1 kinase or engineered degradation of Atg14 and observed homologous chromosome segregation followed by sister chromatid separation; cells then underwent additional rounds of spindle formation and disassembly without DNA re-replication, leading to aberrant chromosome segregation. Analysis of cell-cycle regulators revealed that autophagy inhibition prevents meiosis II-specific expression of Clb3 and leads to the aberrant persistence of Clb1 and Cdc5, two substrates of a meiotic ubiquitin ligase activated by Ama1. Lastly, we found that during meiosis II, autophagy degrades Rim4, an amyloid-like translational repressor whose timed clearance regulates protein production from its mRNA targets, which include CLB3 and AMA1. Strikingly, engineered Clb3 or Ama1 production restored meiotic termination in the absence of autophagy. Thus, autophagy destroys a master regulator of meiotic gene expression to enable irreversible meiotic exit.


Assuntos
Anáfase/genética , Proteínas de Ciclo Celular/genética , Segregação de Cromossomos/genética , Meiose/genética , Ciclossomo-Complexo Promotor de Anáfase/genética , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Segregação de Cromossomos/fisiologia , Humanos , Meiose/fisiologia , Desnaturação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA