Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Cell ; 181(2): 228-230, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32302565

RESUMO

Cellular liquid-liquid phase separation (LLPS) plays a key role in the dynamics and function of RNA-protein condensates like stress granules. In this issue of Cell, Yang et al., Guillén-Boixet et al., and Sanders et al. use a combination of experiment and modeling to provide an exciting mechanistic insight into the relationship between stress granules and LLPS, for example, in the context of protein disorder, switchable interactions, graph theory, and multiple interacting dense phases.


Assuntos
Organelas , RNA , Proteínas
2.
Proc Natl Acad Sci U S A ; 120(47): e2313835120, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37971402

RESUMO

The cyclic AMP response element (CRE) binding protein (CREB) is a transcription factor that contains a 280-residue N-terminal transactivation domain and a basic leucine zipper that mediates interaction with DNA. The transactivation domain comprises three subdomains, the glutamine-rich domains Q1 and Q2 and the kinase inducible activation domain (KID). NMR chemical shifts show that the isolated subdomains are intrinsically disordered but have a propensity to populate local elements of secondary structure. The Q1 and Q2 domains exhibit a propensity for formation of short ß-hairpin motifs that function as binding sites for glutamine-rich sequences. These motifs mediate intramolecular interactions between the CREB Q1 and Q2 domains as well as intermolecular interactions with the glutamine-rich Q1 domain of the TATA-box binding protein associated factor 4 (TAF4) subunit of transcription factor IID (TFIID). Using small-angle X-ray scattering, NMR, and single-molecule Förster resonance energy transfer, we show that the Q1, Q2, and KID regions remain dynamically disordered in a full-length CREB transactivation domain (CREBTAD) construct. The CREBTAD polypeptide chain is largely extended although some compaction is evident in the KID and Q2 domains. Paramagnetic relaxation enhancement reveals transient long-range contacts both within and between the Q1 and Q2 domains while the intervening KID domain is largely devoid of intramolecular interactions. Phosphorylation results in expansion of the KID domain, presumably making it more accessible for binding the CBP/p300 transcriptional coactivators. Our study reveals the complex nature of the interactions within the intrinsically disordered transactivation domain of CREB and provides molecular-level insights into dynamic and transient interactions mediated by the glutamine-rich domains.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Glutamina , Glutamina/metabolismo , Ativação Transcricional , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Regulação da Expressão Gênica , Sítios de Ligação , Ligação Proteica/fisiologia
4.
Chemistry ; 25(22): 5600-5610, 2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30589142

RESUMO

Compartmentalization of biochemical processes is essential for cell function. Although membrane-bound organelles are well studied in this context, recent work has shown that phase separation is a key contributor to cellular compartmentalization through the formation of liquid-like membraneless organelles (MLOs). In this Minireview, the key mechanistic concepts that underlie MLO dynamics and function are first briefly discussed, including the relevant noncovalent interaction chemistry and polymer physical chemistry. Next, a few examples of MLOs and relevant proteins are given, along with their functions, which highlight the relevance of the above concepts. The developing area of active matter and non-equilibrium systems, which can give rise to unexpected effects in fluctuating cellular conditions, are also discussed. Finally, our thoughts for emerging and future directions in the field are discussed, including in vitro and in vivo studies of MLO physical chemistry and function.

6.
Nature ; 498(7454): 390-4, 2013 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-23783631

RESUMO

Allostery is an intrinsic property of many globular proteins and enzymes that is indispensable for cellular regulatory and feedback mechanisms. Recent theoretical and empirical observations indicate that allostery is also manifest in intrinsically disordered proteins, which account for a substantial proportion of the proteome. Many intrinsically disordered proteins are promiscuous binders that interact with multiple partners and frequently function as molecular hubs in protein interaction networks. The adenovirus early region 1A (E1A) oncoprotein is a prime example of a molecular hub intrinsically disordered protein. E1A can induce marked epigenetic reprogramming of the cell within hours after infection, through interactions with a diverse set of partners that include key host regulators such as the general transcriptional coactivator CREB binding protein (CBP), its paralogue p300, and the retinoblastoma protein (pRb; also called RB1). Little is known about the allosteric effects at play in E1A-CBP-pRb interactions, or more generally in hub intrinsically disordered protein interaction networks. Here we used single-molecule fluorescence resonance energy transfer (smFRET) to study coupled binding and folding processes in the ternary E1A system. The low concentrations used in these high-sensitivity experiments proved to be essential for these studies, which are challenging owing to a combination of E1A aggregation propensity and high-affinity binding interactions. Our data revealed that E1A-CBP-pRb interactions have either positive or negative cooperativity, depending on the available E1A interaction sites. This striking cooperativity switch enables fine-tuning of the thermodynamic accessibility of the ternary versus binary E1A complexes, and may permit a context-specific tuning of associated downstream signalling outputs. Such a modulation of allosteric interactions is probably a common mechanism in molecular hub intrinsically disordered protein function.


Assuntos
Proteínas E1A de Adenovirus/química , Proteínas E1A de Adenovirus/metabolismo , Regulação Alostérica , Motivos de Aminoácidos , Animais , Anisotropia , Proteína de Ligação a CREB/química , Proteína de Ligação a CREB/metabolismo , Transferência Ressonante de Energia de Fluorescência , Humanos , Camundongos , Modelos Moleculares , Ligação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Proteína do Retinoblastoma/química , Proteína do Retinoblastoma/metabolismo , Termodinâmica , Fatores de Transcrição de p300-CBP/química
7.
Biochemistry ; 57(17): 2470-2477, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29569441

RESUMO

Compartmentalization of biochemical components, interactions, and reactions is critical for the function of cells. While intracellular partitioning of molecules via membranes has been extensively studied, there has been an expanding focus in recent years on the critical cellular roles and biophysical mechanisms of action of membraneless organelles (MLOs) such as the nucleolus. In this context, a substantial body of recent work has demonstrated that liquid-liquid phase separation plays a key role in MLO formation. However, less is known about MLO dissociation, with phosphorylation being the primary mechanism demonstrated thus far. In this Perspective, we focus on another mechanism for MLO dissociation that has been described in recent work, namely a reentrant phase transition (RPT). This concept, which emerges from the polymer physics field, provides a mechanistic basis for both formation and dissolution of MLOs by monotonic tuning of RNA concentration, which is an outcome of cellular processes such as transcription. Furthermore, the RPT model also predicts the formation of dynamic substructures (vacuoles) of the kind that have been observed in cellular MLOs. We end with a discussion of future directions in terms of open questions and methods that can be used to answer them, including further exploration of RPTs in vitro, in cells, and in vivo using ensemble and single-molecule methods as well as theory and computation. We anticipate that continued studies will further illuminate the important roles of reentrant phase transitions and associated non-equilibrium dynamics in the spatial patterning of the biochemistry and biology of the cell.


Assuntos
Fenômenos Biofísicos , Compartimento Celular/genética , Organelas/genética , Transição de Fase , Citoplasma/química , Citoplasma/genética , Membranas/química , Simulação de Dinâmica Molecular , Organelas/química , Fosforilação
8.
Eur Biophys J ; 47(1): 89-94, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29080139

RESUMO

Protein thermodynamic stability is intricately linked to cellular function, and altered stability can lead to dysfunction and disease. The linear extrapolation model (LEM) is commonly used to obtain protein unfolding free energies ([Formula: see text]) by extrapolation of solvent denaturation data to zero denaturant concentration. However, for some proteins, different denaturants result in non-coincident LEM-derived [Formula: see text] values, raising questions about the inherent assumption that the obtained [Formula: see text] values are intrinsic to the protein. Here, we used single-molecule FRET measurements to better understand such discrepancies by directly probing changes in the dimensions of the protein G B1 domain (GB1), a well-studied protein folding model, upon urea and guanidine hydrochloride denaturation. A comparison of the results for the two denaturants suggests denaturant-specific structural energetics in the GB1 denatured ensemble, revealing a role of the denatured state in the variable thermodynamic behavior of proteins.


Assuntos
Proteínas de Bactérias/química , Desnaturação Proteica/efeitos dos fármacos , Transferência Ressonante de Energia de Fluorescência , Guanidina/farmacologia , Domínios Proteicos , Termodinâmica , Ureia/farmacologia
9.
Semin Cell Dev Biol ; 37: 26-34, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25305580

RESUMO

A substantial fraction of the human proteome encodes disordered proteins. Protein disorder is associated with a variety of cellular functions and misfunction, and is therefore of clear import to biological systems. However, disorder lends itself to conformational flexibility and heterogeneity, rendering proteins which feature prominent disorder difficult to study using conventional structural biology methods. Here we discuss a few examples of how single-molecule methods are providing new insight into the biophysics and complexity of these proteins by avoiding ensemble averaging, thereby providing direct information about the complex distributions and dynamics of this important class of proteins. Examples of note include characterization of isolated IDPs in solution as collapsed and dynamic species, detailed insight into complex IDP folding landscapes, and new information about how tunable regulation of structure-mediated binding cooperativity and consequent function can be achieved through protein disorder. With these exciting advances in view, we conclude with a discussion of a few complementary and emerging single-molecule efforts of particular promise, including complementary and enhanced methodologies for studying disorder in proteins, and experiments to investigate the potential role for IDP-induced phase separation as a critical functional element in biological systems.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Proteínas/química , Regulação Alostérica , Animais , Humanos , Proteínas Intrinsicamente Desordenadas/metabolismo , Ligação Proteica , Dobramento de Proteína , Proteínas/metabolismo
10.
Angew Chem Int Ed Engl ; 56(38): 11354-11359, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28556382

RESUMO

Intracellular ribonucleoprotein (RNP) granules are membrane-less droplet organelles that are thought to regulate posttranscriptional gene expression. While liquid-liquid phase separation may drive RNP granule assembly, the mechanisms underlying their supramolecular dynamics and internal organization remain poorly understood. Herein, we demonstrate that RNA, a primary component of RNP granules, can modulate the phase behavior of RNPs by controlling both droplet assembly and dissolution in vitro. Monotonically increasing the RNA concentration initially leads to droplet assembly by complex coacervation and subsequently triggers an RNP charge inversion, which promotes disassembly. This RNA-mediated reentrant phase transition can drive the formation of dynamic droplet substructures (vacuoles) with tunable lifetimes. We propose that active cellular processes that can create an influx of RNA into RNP granules, such as transcription, can spatiotemporally control the organization and dynamics of such liquid-like organelles.


Assuntos
Ribonucleoproteínas/química , Termodinâmica , Tamanho da Partícula , Transição de Fase , RNA/química , Propriedades de Superfície
11.
Chembiochem ; 17(11): 981-4, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27115850

RESUMO

Many cellular functions are critically dependent on the folding of complex multimeric proteins, such as p97, a hexameric multidomain AAA+ chaperone. Given the complex architecture of p97, single-molecule (sm) FRET would be a powerful tool for studying folding while avoiding ensemble averaging. However, dual site-specific labeling of such a large protein for smFRET is a significant challenge. Here, we address this issue by using bioorthogonal azide-alkyne chemistry to attach an smFRET dye pair to site-specifically incorporated unnatural amino acids, allowing us to generate p97 variants reporting on inter- or intradomain structural features. An initial proof-of-principle set of smFRET results demonstrated the strengths of this labeling method. Our results highlight this as a powerful tool for structural studies of p97 and other large protein machines.


Assuntos
Adenosina Trifosfatases/metabolismo , Aminoácidos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Aminoácidos/química , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Química Click , Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência , Humanos , Hidrazinas/química , Dobramento de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteína com Valosina
12.
Angew Chem Int Ed Engl ; 55(41): 12789-12792, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27612332

RESUMO

The intrinsically disordered protein (IDP), α-synuclein (αS), is well-known for phospholipid membrane binding-coupled folding into tunable helical conformers. Here, using single-molecule experiments in conjunction with ensemble assays and a theoretical model, we present a unique case demonstrating that the interaction-folding landscape of αS can be tuned by two-dimensional (2D) crowding through simultaneous binding of a second protein on the bilayer surface. Unexpectedly, the experimental data show a clear deviation from a simple competitive inhibition model, but are consistent with a bimodal inhibition mechanism wherein membrane binding of a second protein (a membrane interacting chaperone, Hsp27, in this case) differentially inhibits two distinct modules of αS-membrane interaction. As a consequence, αS molecules are forced to access a hidden conformational state on the phospholipid bilayer in which only the higher-affinity module remains membrane-bound. Our results demonstrate that macromolecular crowding in two dimensions can play a significant role in shaping the conformational landscape of membrane-binding IDPs with multiple binding modes.


Assuntos
alfa-Sinucleína/química , Conformação Proteica
13.
Angew Chem Int Ed Engl ; 55(5): 1675-9, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26679013

RESUMO

As for many intrinsically disordered proteins, order-disorder transitions in the N-terminal oligomerization domain of the multifunctional nucleolar protein nucleophosmin (Npm-N) are central to its function, with phosphorylation and partner binding acting as regulatory switches. However, the mechanism of this transition and its regulation remain poorly understood. In this study, single-molecule and ensemble experiments revealed pathways with alternative sequences of folding and assembly steps for Npm-N. Pathways could be switched by altering the ionic strength. Phosphorylation resulted in pathway-specific effects, and decoupled folding and assembly steps to facilitate disorder. Conversely, binding to a physiological partner locked Npm-N in ordered pentamers and counteracted the effects of phosphorylation. The mechanistic plasticity found in the Npm-N order-disorder transition enabled a complex interplay of phosphorylation and partner-binding steps to modulate its folding landscape.


Assuntos
Proteínas/química , Fosforilação , Ligação Proteica
14.
Chemphyschem ; 16(1): 90-4, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25345588

RESUMO

Intrinsically disordered proteins (IDPs) are involved in diverse cellular functions. Many IDPs can interact with multiple binding partners, resulting in their folding into alternative ligand-specific functional structures. For such multi-structural IDPs, a key question is whether these multiple structures are fully encoded in the protein sequence, as is the case in many globular proteins. To answer this question, here we employed a combination of single-molecule and ensemble techniques to compare ligand-induced and osmolyte-forced folding of α-synuclein. Our results reveal context-dependent modulation of the protein's folding landscape, suggesting that the codes for the protein's native folds are partially encoded in its primary sequence, and are completed only upon interaction with binding partners. Our findings suggest a critical role for cellular interactions in expanding the repertoire of folds and functions available to disordered proteins.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Dobramento de Proteína , alfa-Sinucleína/química , Ligantes
15.
Proc Natl Acad Sci U S A ; 109(44): 17826-31, 2012 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-22826265

RESUMO

Protein structure and function depend on a close interplay between intrinsic folding energy landscapes and the chemistry of the protein environment. Osmolytes are small-molecule compounds that can act as chemical chaperones by altering the environment in a cellular context. Despite their importance, detailed studies on the role of these chemical chaperones in modulating structure and dimensions of intrinsically disordered proteins have been limited. Here, we used single-molecule Förster resonance energy transfer to test the counteraction hypothesis of counterbalancing effects between the protecting osmolyte trimethylamine-N-oxide (TMAO) and denaturing osmolyte urea for the case of α-synuclein, a Parkinson's disease-linked protein whose monomer exhibits significant disorder. The single-molecule experiments, which avoid complications from protein aggregation, do not exhibit clear solvent-induced cooperative protein transitions for these osmolytes, unlike results from previous studies on globular proteins. Our data demonstrate the ability of TMAO and urea to shift α-synuclein structures towards either more compact or expanded average dimensions. Strikingly, the experiments directly reveal that a 21 [urea][TMAO] ratio has a net neutral effect on the protein's dimensions, a result that holds regardless of the absolute osmolyte concentrations. Our findings shed light on a surprisingly simple aspect of the interplay between urea and TMAO on α-synuclein in the context of intrinsically disordered proteins, with potential implications for the biological roles of such chemical chaperones. The results also highlight the strengths of single-molecule experiments in directly probing the chemical physics of protein structure and disorder in more chemically complex environments.


Assuntos
Chaperonas Moleculares/química , alfa-Sinucleína/química , Transferência Ressonante de Energia de Fluorescência , Metilaminas/química , Conformação Proteica , Ureia/química
16.
Proc Natl Acad Sci U S A ; 109(28): 11172-7, 2012 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-22745165

RESUMO

Some amyloid-forming polypeptides are associated with devastating human diseases and others provide important biological functions. For both, oligomeric intermediates appear during amyloid assembly. Currently we have few tools for characterizing these conformationally labile intermediates and discerning what governs their benign versus toxic states. Here, we examine intermediates in the assembly of a normal, functional amyloid, the prion-determining region of yeast Sup35 (NM). During assembly, NM formed a variety of oligomers with different sizes and conformation-specific antibody reactivities. Earlier oligomers were less compact and reacted with the conformational antibody A11. More mature oligomers were more compact and reacted with conformational antibody OC. We found we could arrest NM in either of these two distinct oligomeric states with small molecules or crosslinking. The A11-reactive oligomers were more hydrophobic (as measured by Nile Red binding) and were highly toxic to neuronal cells, while OC-reactive oligomers were less hydrophobic and were not toxic. The A11 and OC antibodies were originally raised against oligomers of Aß, an amyloidogenic peptide implicated in Alzheimer's disease (AD) that is completely unrelated to NM in sequence. Thus, this natural yeast prion samples two conformational states similar to those sampled by Aß, and when assembly stalls at one of these two states, but not the other, it becomes extremely toxic. Our results have implications for selective pressures operating on the evolution of amyloid folds across a billion years of evolution. Understanding the features that govern such conformational transitions will shed light on human disease and evolution alike.


Assuntos
Amiloide/química , Doença de Alzheimer/metabolismo , Anisotropia , Sequência Conservada , Detergentes/farmacologia , Corantes Fluorescentes/farmacologia , Humanos , Cinética , Modelos Moleculares , Conformação Molecular , Neurônios/metabolismo , Peptídeos/química , Conformação Proteica , Estrutura Terciária de Proteína , Espectrometria de Fluorescência/métodos , Tirosina/química
17.
Chem Soc Rev ; 43(4): 1172-88, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24336839

RESUMO

Single-molecule (SM) fluorescence methods have been increasingly instrumental in our current understanding of a number of key aspects of protein folding and aggregation landscapes over the past decade. With the advantage of a model free approach and the power of probing multiple subpopulations and stochastic dynamics directly in a heterogeneous structural ensemble, SM methods have emerged as a principle technique for studying complex systems such as intrinsically disordered proteins (IDPs), globular proteins in the unfolded basin and during folding, and early steps of protein aggregation in amyloidogenesis. This review highlights the application of these methods in investigating the free energy landscapes, folding properties and dynamics of individual protein molecules and their complexes, with an emphasis on inherently flexible systems such as IDPs.


Assuntos
Dobramento de Proteína , Proteínas/química , Espectrometria de Fluorescência/métodos , Animais , Fluorescência , Humanos , Simulação de Dinâmica Molecular , Conformação Proteica
18.
Nat Methods ; 8(3): 239-41, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21297620

RESUMO

We combined rapid microfluidic mixing with single-molecule fluorescence resonance energy transfer to study the folding kinetics of the intrinsically disordered human protein α-synuclein. The time-resolution of 0.2 ms revealed initial collapse of the unfolded protein induced by binding with lipid mimics and subsequent rapid formation of transient structures in the encounter complex. The method also enabled analysis of rapid dissociation and unfolding of weakly bound complexes triggered by massive dilution.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Técnicas Analíticas Microfluídicas/métodos , alfa-Sinucleína/química , Humanos , Cinética , Ligação Proteica , Dobramento de Proteína
19.
RNA ; 17(10): 1831-45, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21868483

RESUMO

The antiviral role of RNA interference (RNAi) in humans remains to be better understood. In RNAi, Ago2 proteins and microRNAs (miRNAs) or small interfering RNAs (siRNAs) form endonucleolytically active complexes which down-regulate expression of target mRNAs. P-bodies, cytoplasmic centers of mRNA decay, are involved in these pathways. Evidence exists that hepatitis C virus (HCV) utilizes host cellular RNAi machinery, including miRNA-122, Ago1-4, and Dicer proteins for replication and viral genome translation in Huh7 cells by, so far, nebulous mechanisms. Conversely, synthetic siRNAs have been used to suppress HCV replication. Here, using a combination of biochemical, transfection, confocal imaging, and digital image analysis approaches, we reveal that replication of HCV RNA depends on recruitment of Ago2 and miRNA-122 to lipid droplets, while suppression of HCV RNA by siRNA and Ago2 involves interaction with P-bodies. Such partitioning of Ago2 proteins into different complexes and separate subcellular domains likely results in modulation of their activity by different reaction partners. We propose a model in which partitioning of host RNAi and viral factors into physically and functionally distinct subcellular compartments emerges as a mechanism regulating the dual interaction of cellular RNAi with HCV RNA.


Assuntos
Fator de Iniciação 2 em Eucariotos/metabolismo , Hepacivirus/genética , Metabolismo dos Lipídeos , MicroRNAs/genética , Interferência de RNA , RNA Viral/genética , Proteínas Argonautas , Linhagem Celular , Fator de Iniciação 2 em Eucariotos/genética , Humanos , Ribonuclease III/metabolismo
20.
Biomolecules ; 13(1)2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36671536

RESUMO

Biomolecular condensation and phase separation are increasingly understood to play crucial roles in cellular compartmentalization and spatiotemporal regulation of cell machinery implicated in function and pathology. A key aspect of current research is to gain insight into the underlying physical mechanisms of these processes. Accordingly, concepts of soft matter and polymer physics, the thermodynamics of mixing, and material science have been utilized for understanding condensation mechanisms of multivalent macromolecules resulting in viscoelastic mesoscopic supramolecular assemblies. Here, we focus on two topological concepts that have recently been providing key mechanistic understanding in the field. First, we will discuss how percolation provides a network-topology-related framework that offers an interesting paradigm to understand the complex networking of dense 'connected' condensate structures and, therefore, their phase behavior. Second, we will discuss the idea of entanglement as another topological concept that has deep roots in polymer physics and important implications for biomolecular condensates. We will first review some historical developments and fundamentals of these concepts, then we will discuss current advancements and recent examples. Our discussion ends with a few open questions and the challenges to address them, hinting at unveiling fresh possibilities for the modification of existing knowledge as well as the development of new concepts relevant to condensate science.


Assuntos
Polímeros , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA