Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
J Biol Chem ; 299(8): 104991, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37392853

RESUMO

Increasing evidence supports a role for inflammation in the early development and progression of retinal complications caused by diabetes. We recently demonstrated that the stress response protein regulated in development and DNA damage response 1 (REDD1) promotes diabetes-induced retinal inflammation by sustaining canonical activation of nuclear transcription factor, NF-κB. The studies here were designed to identify signaling events whereby REDD1 promotes NF-κB activation in the retina of diabetic mice. We observed increased REDD1 expression in the retina of mice after 16 weeks of streptozotocin (STZ)-induced diabetes and found that REDD1 was essential for diabetes to suppress inhibitory phosphorylation of glycogen synthase kinase 3ß (GSK3ß) at S9. In human retinal MIO-M1 Müller cell cultures, REDD1 deletion prevented dephosphorylation of GSK3ß and increased NF-κB activation in response to hyperglycemic conditions. Expression of a constitutively active GSK3ß variant restored NF-κB activation in cells deficient for REDD1. In cells exposed to hyperglycemic conditions, GSK3ß knockdown inhibited NF-κB activation and proinflammatory cytokine expression by preventing inhibitor of κB kinase complex autophosphorylation and inhibitor of κB degradation. In both the retina of STZ-diabetic mice and in Müller cells exposed to hyperglycemic conditions, GSK3 inhibition reduced NF-κB activity and prevented an increase in proinflammatory cytokine expression. In contrast with STZ-diabetic mice receiving a vehicle control, macrophage infiltration was not observed in the retina of STZ-diabetic mice treated with GSK3 inhibitor. Collectively, the findings support a model wherein diabetes enhances REDD1-dependent activation of GSK3ß to promote canonical NF-κB signaling and the development of retinal inflammation.


Assuntos
Diabetes Mellitus Experimental , Hiperglicemia , Animais , Humanos , Masculino , Camundongos , Citocinas/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Hiperglicemia/metabolismo , Inflamação/genética , Inflamação/metabolismo , NF-kappa B/metabolismo , Retina/metabolismo
2.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38928166

RESUMO

Activation of the transcription factor NF-κB in cardiomyocytes has been implicated in the development of cardiac function deficits caused by diabetes. NF-κB controls the expression of an array of pro-inflammatory cytokines and chemokines. We recently discovered that the stress response protein regulated in development and DNA damage response 1 (REDD1) was required for increased pro-inflammatory cytokine expression in the hearts of diabetic mice. The studies herein were designed to extend the prior report by investigating the role of REDD1 in NF-κB signaling in cardiomyocytes. REDD1 genetic deletion suppressed NF-κB signaling and nuclear localization of the transcription factor in human AC16 cardiomyocyte cultures exposed to TNFα or hyperglycemic conditions. A similar suppressive effect on NF-κB activation and pro-inflammatory cytokine expression was also seen in cardiomyocytes by knocking down the expression of GSK3ß. NF-κB activity was restored in REDD1-deficient cardiomyocytes exposed to hyperglycemic conditions by expression of a constitutively active GSK3ß variant. In the hearts of diabetic mice, REDD1 was required for reduced inhibitory phosphorylation of GSK3ß at S9 and upregulation of IL-1ß and CCL2. Diabetic REDD1+/+ mice developed systolic functional deficits evidenced by reduced ejection fraction. By contrast, REDD1-/- mice did not exhibit a diabetes-induced deficit in ejection fraction and left ventricular chamber dilatation was reduced in diabetic REDD1-/- mice, as compared to diabetic REDD1+/+ mice. Overall, the results support a role for REDD1 in promoting GSK3ß-dependent NF-κB signaling in cardiomyocytes and in the development of cardiac function deficits in diabetic mice.


Assuntos
Diabetes Mellitus Experimental , Glicogênio Sintase Quinase 3 beta , Miócitos Cardíacos , NF-kappa B , Transdução de Sinais , Fatores de Transcrição , Animais , Miócitos Cardíacos/metabolismo , NF-kappa B/metabolismo , Camundongos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Camundongos Knockout , Masculino , Quimiocina CCL2/metabolismo , Quimiocina CCL2/genética , Interleucina-1beta/metabolismo , Camundongos Endogâmicos C57BL , Fator de Necrose Tumoral alfa/metabolismo , Fosforilação , Deleção de Genes
3.
J Biol Chem ; 298(12): 102638, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36309088

RESUMO

Inflammation contributes to the progression of retinal pathology caused by diabetes. Here, we investigated a role for the stress response protein regulated in development and DNA damage response 1 (REDD1) in the development of retinal inflammation. Increased REDD1 expression was observed in the retina of mice after 16-weeks of streptozotocin (STZ)-induced diabetes, and REDD1 was essential for diabetes-induced pro-inflammatory cytokine expression. In human retinal MIO-M1 Müller cell cultures, REDD1 deletion prevented increased pro-inflammatory cytokine expression in response to hyperglycemic conditions. REDD1 deletion promoted nuclear factor erythroid-2-related factor 2 (Nrf2) hyperactivation; however, Nrf2 was not required for reduced inflammatory cytokine expression in REDD1-deficient cells. Rather, REDD1 enhanced inflammatory cytokine expression by promoting activation of nuclear transcription factor κB (NF-κB). In WT cells exposed to tumor necrosis factor α (TNFα), inflammatory cytokine expression was increased in coordination with activating transcription factor 4 (ATF4)-dependent REDD1 expression and sustained activation of NF-κB. In both Müller cell cultures exposed to TNFα and in the retina of STZ-diabetic mice, REDD1 deletion promoted inhibitor of κB (IκB) expression and reduced NF-κB DNA-binding activity. We found that REDD1 acted upstream of IκB by enhancing both K63-ubiquitination and auto-phosphorylation of IκB kinase complex. In contrast with STZ-diabetic REDD1+/+ mice, IκB kinase complex autophosphorylation and macrophage infiltration were not observed in the retina of STZ-diabetic REDD1-/- mice. The findings provide new insight into how diabetes promotes retinal inflammation and support a model wherein REDD1 sustains activation of canonical NF-κB signaling.


Assuntos
Diabetes Mellitus Experimental , Retinite , Fatores de Transcrição , Animais , Humanos , Camundongos , Citocinas/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Proteínas de Choque Térmico/metabolismo , Quinase I-kappa B/metabolismo , Inflamação/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Retina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Retinite/patologia
4.
Am J Physiol Endocrinol Metab ; 324(1): E62-E72, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36383638

RESUMO

Endoplasmic reticulum (ER) stress and inflammation are hallmarks of myocardial impairment. Here, we investigated the role of the stress response protein regulated in development and DNA damage 1 (REDD1) as a molecular link between ER stress and inflammation in cardiomyocytes. In mice fed a high-fat high-sucrose (HFHS, 42% kcal fat, 34% sucrose by weight) diet for 12 wk, REDD1 expression in the heart was increased in coordination with markers of ER stress and inflammation. In human AC16 cardiomyocytes exposed to either hyperglycemic conditions or the saturated fatty acid palmitate, REDD1 expression was increased coincident with ER stress and upregulated expression of the proinflammatory cytokines IL-1ß, IL-6, and TNFα. In cardiomyocytes exposed to hyperglycemic/hyperlipidemic conditions, pharmacological inhibition of the ER kinase protein kinase RNA-like endoplasmic reticulum kinase (PERK) or knockdown of the transcription factor ATF4 prevented the increase in REDD1 expression. REDD1 deletion reduced proinflammatory cytokine expression in both cardiomyocytes exposed to hyperglycemic/hyperlipidemic conditions and in the hearts of obese mice. Overall, the findings support a model wherein HFHS diet contributes to the development of inflammation in cardiomyocytes by promoting REDD1 expression via activation of a PERK/ATF4 signaling axis.NEW & NOTEWORTHY Interplay between endoplasmic reticulum stress and inflammation contributes to cardiovascular disease progression. The studies here identify the stress response protein known as REDD1 as a missing molecular link that connects the development of endoplasmic reticulum stress with increased production of proinflammatory cytokines in the hearts of obese mice.


Assuntos
Citocinas , Proteínas Quinases , Animais , Humanos , Camundongos , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Citocinas/metabolismo , Dano ao DNA , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Proteínas de Choque Térmico/metabolismo , Inflamação/metabolismo , Camundongos Obesos , Proteínas Quinases/metabolismo
5.
J Biol Chem ; 295(21): 7350-7361, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32295843

RESUMO

The transcription factor nuclear factor erythroid-2-related factor 2 (Nrf2) plays a critical role in reducing oxidative stress by promoting the expression of antioxidant genes. Both individuals with diabetes and preclinical diabetes models exhibit evidence of a defect in retinal Nrf2 activation. We recently demonstrated that increased expression of the stress response protein regulated in development and DNA damage 1 (REDD1) is necessary for the development of oxidative stress in the retina of streptozotocin-induced diabetic mice. In the present study, we tested the hypothesis that REDD1 suppresses the retinal antioxidant response to diabetes by repressing Nrf2 function. We found that REDD1 ablation enhances Nrf2 DNA-binding activity in the retina and that the suppressive effect of diabetes on Nrf2 activity is absent in the retina of REDD1-deficient mice compared with WT. In human MIO-M1 Müller cell cultures, REDD1 deletion prevented oxidative stress in response to hyperglycemic conditions, and this protective effect required Nrf2. REDD1 suppressed Nrf2 stability by promoting its proteasomal degradation independently of Nrf2's interaction with Kelch-like ECH-associated protein 1 (Keap1), but REDD1-mediated Nrf2 degradation required glycogen synthase kinase 3 (GSK3) activity and Ser-351/Ser-356 of Nrf2. Diabetes diminished inhibitory phosphorylation of glycogen synthase kinase 3ß (GSK3ß) at Ser-9 in the retina of WT mice but not in REDD1-deficient mice. Pharmacological inhibition of GSK3 enhanced Nrf2 activity and prevented oxidative stress in the retina of diabetic mice. The findings support a model wherein hyperglycemia-induced REDD1 blunts the Nrf2 antioxidant response to diabetes by activating GSK3, which, in turn, phosphorylates Nrf2 to promote its degradation.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Proteólise , Retina/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Camundongos , Camundongos Knockout , Fator 2 Relacionado a NF-E2/genética , Retina/patologia , Fatores de Transcrição/genética
6.
J Biol Chem ; 295(31): 10831-10841, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32475820

RESUMO

Activation of the immune costimulatory molecule cluster of differentiation 40 (CD40) in Müller glia has been implicated in the initiation of diabetes-induced retinal inflammation. Results from previous studies support that CD40 protein expression is elevated in Müller glia of diabetic mice; however, the mechanisms responsible for this increase have not been explored. Here, we evaluated the hypothesis that diabetes augments translation of the Cd40 mRNA. Mice receiving thiamet G (TMG), an inhibitor of the O-GlcNAc hydrolase O-GlcNAcase, exhibited enhanced retinal protein O-GlcNAcylation and increased Cd40 mRNA translation. TMG administration also promoted Cd40 mRNA association with Müller cell-specific ribosomes isolated from the retina of RiboTag mice. Similar effects on O-GlcNAcylation and Cd40 mRNA translation were also observed in the retina of a mouse model of type 1 diabetes. In cultured cells, TMG promoted sequestration of the cap-binding protein eIF4E (eukaryotic translation in initiation factor 4E) by 4E-BP1 (eIF4E-binding protein 1) and enhanced cap-independent Cd40 mRNA translation as assessed by a bicistronic reporter that contained the 5'-UTR of the Cd40 mRNA. Ablation of 4E-BP1/2 prevented the increase in Cd40 mRNA translation in TMG-exposed cells, and expression of a 4E-BP1 variant that constitutively sequesters eIF4E promoted reporter activity. Extending on the cell culture results, we found that in contrast to WT mice, diabetic 4E-BP1/2-deficient mice did not exhibit enhanced retinal Cd40 mRNA translation and failed to up-regulate expression of the inflammatory marker nitric-oxide synthase 2. These findings support a model wherein diabetes-induced O-GlcNAcylation of 4E-BP1 promotes Cd40 mRNA translation in Müller glia.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antígenos CD40/biossíntese , Proteínas de Ciclo Celular/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Células Ependimogliais/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Antígenos CD40/genética , Proteínas de Ciclo Celular/genética , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patologia , Células Ependimogliais/patologia , Fatores de Iniciação em Eucariotos/genética , Feminino , Regulação Enzimológica da Expressão Gênica , Masculino , Camundongos , Camundongos Knockout , Óxido Nítrico Sintase Tipo II/biossíntese , Óxido Nítrico Sintase Tipo II/genética , RNA Mensageiro/genética , Regulação para Cima
7.
Am J Physiol Endocrinol Metab ; 320(2): E306-E315, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33284085

RESUMO

Increased expression of the peptide hormone retinol-binding protein 4 (RBP4) has been implicated in the development of insulin resistance, type 2 diabetes, and visual dysfunction. Prior investigations of the mechanisms that influence RBP4 synthesis have focused solely on changes in mRNA abundance. Yet, the production of many secreted proteins is controlled at the level of mRNA translation, as it allows for a rapid and reversible change in expression. Herein, we evaluated Rbp4 mRNA translation using sucrose density gradient centrifugation. In the liver of fasted rodents, Rbp4 mRNA translation was low. In response to refeeding, Rbp4 mRNA translation was enhanced and RBP4 levels in serum were increased. In H4IIE cells, refreshing culture medium promoted Rbp4 mRNA translation and expression of the protein. Rbp4 mRNA abundance was not increased by either experimental manipulation. Enhanced Rbp4 mRNA translation was associated with activation of the kinase mechanistic target of rapamycin in complex 1 (mTORC1) and enhanced phosphorylation of the translational repressor eukaryotic initiation factor 4E-binding protein 1 (4E-BP1). In H4IIE cells, expression of a 4E-BP1 variant that is unable to be phosphorylated by mTORC1 or suppression of mTORC1 with rapamycin attenuated activity of a luciferase reporter encoding the Rbp4 mRNA 5'-untranslated region (UTR). Purine substitutions to disrupt a terminal oligopyrimidine (TOP)-like sequence in the Rbp4 5'-UTR prevented the suppressive effect of rapamycin on reporter activity. Rapamycin also prevented upregulation of Rbp4 mRNA translation in the liver and reduced serum levels of RBP4 in response to feeding. Overall, the findings support a model in which nutrient-induced activation of mTORC1 upregulates Rbp4 mRNA translation to promote RBP4 synthesis.NEW & NOTEWORTHY RBP4 plays a critical role in metabolic disease, yet relatively little is known about the mechanisms that regulate its production. Herein, we provide evidence for translational control of RBP4 synthesis. We demonstrate that activation of the nutrient-sensitive kinase mTORC1 promotes hepatic Rbp4 mRNA translation. The findings support the possibility that targeting Rbp4 mRNA translation represents an alternative to current therapeutic interventions that lower serum RBP4 concentration by promoting urinary excretion of the protein.


Assuntos
Hepatócitos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Plasmáticas de Ligação ao Retinol/genética , Proteínas Plasmáticas de Ligação ao Retinol/metabolismo , Animais , Células Cultivadas , Ingestão de Alimentos/fisiologia , Humanos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Biossíntese de Proteínas/fisiologia , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia
8.
J Biol Chem ; 294(14): 5508-5520, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30733333

RESUMO

Diabetes promotes the posttranslational modification of proteins by O-linked addition of GlcNAc (O-GlcNAcylation) to Ser/Thr residues of proteins and thereby contributes to diabetic complications. In the retina of diabetic mice, the repressor of mRNA translation, eIF4E-binding protein 1 (4E-BP1), is O-GlcNAcylated, and sequestration of the cap-binding protein eukaryotic translation initiation factor (eIF4E) is enhanced. O-GlcNAcylation has also been detected on several eukaryotic translation initiation factors and ribosomal proteins. However, the functional consequence of this modification is unknown. Here, using ribosome profiling, we evaluated the effect of enhanced O-GlcNAcylation on retinal gene expression. Mice receiving thiamet G (TMG), an inhibitor of the O-GlcNAc hydrolase O-GlcNAcase, exhibited enhanced retinal protein O-GlcNAcylation. The principal effect of TMG on retinal gene expression was observed in ribosome-associated mRNAs (i.e. mRNAs undergoing translation), as less than 1% of mRNAs exhibited changes in abundance. Remarkably, ∼19% of the transcriptome exhibited TMG-induced changes in ribosome occupancy, with 1912 mRNAs having reduced and 1683 mRNAs having increased translational rates. In the retina, the effect of O-GlcNAcase inhibition on translation of specific mitochondrial proteins, including superoxide dismutase 2 (SOD2), depended on 4E-BP1/2. O-GlcNAcylation enhanced cellular respiration and promoted mitochondrial superoxide levels in WT cells, and 4E-BP1/2 deletion prevented O-GlcNAcylation-induced mitochondrial superoxide in cells in culture and in the retina. The retina of diabetic WT mice exhibited increased reactive oxygen species levels, an effect not observed in diabetic 4E-BP1/2-deficient mice. These findings provide evidence for a mechanism whereby diabetes-induced O-GlcNAcylation promotes oxidative stress in the retina by altering the selection of mRNAs for translation.


Assuntos
Proteínas de Transporte/metabolismo , Retinopatia Diabética/metabolismo , Proteínas do Olho/metabolismo , Mitocôndrias/metabolismo , Fosfoproteínas/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Retina/metabolismo , Acilação , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Transporte/genética , Proteínas de Ciclo Celular , Retinopatia Diabética/genética , Retinopatia Diabética/patologia , Fatores de Iniciação em Eucariotos , Proteínas do Olho/genética , Feminino , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/patologia , Consumo de Oxigênio/efeitos dos fármacos , Fosfoproteínas/genética , Piranos/farmacologia , RNA Mensageiro/genética , Espécies Reativas de Oxigênio/metabolismo , Retina/patologia , Tiazóis/farmacologia
9.
Artigo em Inglês | MEDLINE | ID: mdl-32421369

RESUMO

Fibroblast growth factor 21 (FGF21) is a peptide hormone that acts to enhance insulin sensitivity and reverse many of the metabolic defects associated with consumption of a high-fat diet. Recent studies show that the liver is the primary source of FGF21 in the blood, and that hepatic FGF21 expression is upregulated by glucagon. Interestingly, glucagon acts to upregulate FGF21 production by primary cultures of rat hepatocytes and H4IIE and HepG2 hepatocarcinoma cells independent of changes in FGF21 mRNA abundance, suggesting that FGF21 protein expression is regulated post-transcriptionally. Based on these observations, the goal of the present study was to assess whether or not FGF21 mRNA is translationally regulated. The results show that FGF21 mRNA translation and secretion of the hormone are significantly upregulated in H4IIE cells exposed to 25 nM glucagon, independent of changes in FGF21 mRNA abundance. Furthermore, the glucagon-induced upregulation of FGF21 mRNA translation is associated with suppressed activity of the mechanistic target of rapamycin in complex 1 (mTORC1). Similarly, the results show that rapamycin-induced suppression of mTORC1 leads to upregulation of FGF21 mRNA translation with no change in FGF21 mRNA abundance. In contrast, activation of mTORC1 by refreshing the culture medium leads to downregulation of FGF21 mRNA translation. Notably, re-feeding fasted rats also leads to downregulation of FGF21 mRNA translation concomitantly with activation of mTORC1 in the liver. Overall, the findings support a model in which glucagon acts to upregulate FGF21 production by hepatocytes through suppression of mTORC1 and subsequent upregulation of FGF21 mRNA translation.

10.
J Nutr ; 150(5): 1022-1030, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31875479

RESUMO

BACKGROUND: The protein kinase target of rapamycin (mTOR) in complex 1 (mTORC1) is activated by amino acids and in turn upregulates anabolic processes. Under nutrient-deficient conditions, e.g., amino acid insufficiency, mTORC1 activity is suppressed and autophagy is activated. Intralysosomal amino acids generated by autophagy reactivate mTORC1. However, sustained mTORC1 activation during periods of nutrient insufficiency would likely be detrimental to cellular homeostasis. Thus, mechanisms must exist to prevent amino acids released by autophagy from reactivating the kinase. OBJECTIVE: The objective of the present study was to test whether mTORC1 activity is inhibited during prolonged leucine deprivation through ATF4-dependent upregulation of the mTORC1 suppressors regulated in development and DNA damage response 1 (REDD1) and Sestrin2. METHODS: Mice (8 wk old; C57Bl/6 × 129SvEV) were food deprived (FD) overnight and one-half were refed the next morning. Mouse embryo fibroblasts (MEFs) deficient in ATF4, REDD1, and/or Sestrin2 were deprived of leucine for 0-16 h. mTORC1 activity and ATF4, REDD1, and Sestrin2 expression were assessed in liver and cell lysates. RESULTS: Refeeding FD mice resulted in activation of mTORC1 in association with suppressed expression of both REDD1 and Sestrin2 in the liver. In cells in culture, mTORC1 exhibited a triphasic response to leucine deprivation, with an initial suppression followed by a transient reactivation from 2 to 4 h and a subsequent resuppression after 8 h. Resuppression occurred concomitantly with upregulated expression of ATF4, REDD1, and Sestrin2. However, in cells lacking ATF4, neither REDD1 nor Sestrin2 expression was upregulated by leucine deprivation, and resuppression of mTORC1 was absent. Moreover, in cells lacking either REDD1 or Sestrin2, mTORC1 resuppression was attenuated, and in cells lacking both proteins resuppression was further blunted. CONCLUSIONS: The results suggest that leucine deprivation upregulates expression of both REDD1 and Sestrin2 in an ATF4-dependent manner, and that upregulated expression of both proteins is involved in resuppression of mTORC1 during prolonged leucine deprivation.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Leucina/administração & dosagem , Leucina/deficiência , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Peroxidases/metabolismo , Fatores de Transcrição/metabolismo , Fator 4 Ativador da Transcrição/genética , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peroxidases/genética , Fatores de Transcrição/genética
11.
FASEB J ; : fj201800413RR, 2018 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-29920218

RESUMO

The role of dyslipidemia in the development of retinal dysfunction remains poorly understood. Using an animal model of diet-induced obesity/pre-type 2 diabetes, we investigated molecular defects in the retina arising from consumption of a diet high in saturated fats and sugars ( i.e., a Western diet). We found that feeding mice a Western diet increased the abundance of retinal sphingolipids, attenuated protein kinase B (Akt) phosphorylation, enhanced JNK activation, and increased retinal cell death. When we used palmitate or C6-ceramide (Cer) to assess sphingolipid-mediated signaling in cultured murine and human cells, we observed similar effects on Akt, JNK, and cell death. Furthermore, both Western diet and C6-Cer exposure enhanced expression of the stress-response protein regulated in development and DNA damage response 1 (REDD1) and loss of REDD1 increased C6-Cer-induced JNK activation and cell death. Exogenous REDD1 expression repressed JNK-mediated phosphorylation in cultured cells. We found that thioredoxin-interacting protein (TXNIP) expression was elevated in REDD1-deficient cell lines and C6-Cer promoted TXNIP expression in both wild-type and REDD1-deficient cells. Likewise, TXNIP knockdown attenuated JNK activation and caspase 3 cleavage after either C6-Cer exposure or REDD1 deletion. The results support a model wherein Cer-induced REDD1 expression attenuates TXNIP-dependent JNK activation and retinal cell death.-Dai, W., Miller, W. P., Toro, A. L., Black, A. J., Dierschke, S. K., Feehan, R. P., Kimball, S. R., Dennis, M. D. Deletion of the stress-response protein REDD1 promotes ceramide-induced retinal cell death and JNK activation.

12.
J Biol Chem ; 292(5): 1591-1602, 2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-27965359

RESUMO

Despite recent advances in therapeutics, diabetic retinopathy remains a leading cause of vision impairment. Improvement in the treatment of diabetic retinopathy requires a better understanding of the molecular mechanisms that cause neurovascular complications, particularly in type 2 diabetes. Recent studies demonstrate that rodents fed a high fat diet exhibit retinal dysfunction concomitant with attenuated Akt phosphorylation. The purpose of the present study was to evaluate the impact of a high fat/high sucrose diet on retinal insulin signaling and evaluate the mechanism(s) responsible for the changes. Mice fed a high fat/sucrose diet exhibited attenuated Akt phosphorylation in the retina as compared with mice fed normal chow. Retinas of mice fed a high fat/sucrose diet also exhibited elevated levels of activated JNK as well as enhanced p70S6K1 autoinhibitory domain phosphorylation. In cells, JNK activation enhanced p70S6K1 phosphorylation and mTORC1-dependent activation of the kinase, as evidenced by enhanced phosphorylation of key substrates. Rictor phosphorylation by p70S6K1 was specifically enhanced by the addition of phosphomimetic mutations in the autoinhibitory domain and was more sensitive to inhibition of the kinase as compared with rpS6. Notably, rictor and IRS-1 phosphorylation by p70S6K1 attenuate insulin action through a negative feedback pathway. Indeed, p70S6K1 inhibition prevented the repressive effect of JNK activation on insulin action in retinas. Overall, the results identify the JNK/S6K1 axis as a key molecular mechanism whereby a high fat/sucrose diet impairs insulin action in retina.


Assuntos
Retinopatia Diabética/metabolismo , Insulina/metabolismo , MAP Quinase Quinase 4/metabolismo , Retina/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Substituição de Aminoácidos , Animais , Retinopatia Diabética/genética , Retinopatia Diabética/patologia , Gorduras na Dieta/efeitos adversos , Gorduras na Dieta/farmacologia , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Células HEK293 , Humanos , Insulina/genética , MAP Quinase Quinase 4/genética , Camundongos , Camundongos Knockout , Mutação de Sentido Incorreto , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Domínios Proteicos , Retina/patologia , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Sacarose/efeitos adversos , Sacarose/farmacologia
13.
J Biol Chem ; 290(6): 3865-74, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25548280

RESUMO

Vascular endothelial growth factor (VEGF) is considered a major role player in the pathogenesis of diabetic retinopathy, yet the mechanisms regulating its expression are not fully understood. Our laboratory previously demonstrated that diabetes-induced VEGF expression in the retina was dependent on the repressor of mRNA translation 4E-BP1. Interaction of 4E-BP1 with the cap-binding protein eIF4E regulates protein expression by controlling the selection of mRNAs for translation. The process is regulated by the master kinase mTOR in complex 1 (mTORC1), which phosphorylates 4E-BP1, thus promoting its disassociation from eIF4E. In the present study, we investigated the role of the Akt/mTORC1 repressor REDD1 (regulated in development and DNA damage) in diabetes-induced VEGF expression. REDD1 expression was induced by hyperglycemia in the retina of diabetic rodents and by hyperglycemic conditions in Müller cells concomitant with increased VEGF expression. In Müller cells, hyperglycemic conditions attenuated global rates of protein synthesis and cap-dependent mRNA translation concomitant with up-regulated cap-independent VEGF mRNA translation, as assessed by a bicistronic luciferase reporter assay. Hyperglycemic conditions also attenuated mTORC1 signaling and enhanced 4E-BP1 binding to eIF4E. Furthermore, ectopic expression of REDD1 in Müller cells was sufficient to promote both increased 4E-BP1 binding to eIF4E and VEGF expression. Whereas the retina of wild-type mice exhibited increased expression of VEGF and tumor necrosis factor alpha (TNF-α) 4 weeks after streptozotocin administration, the retina of REDD1 knock-out mice failed to do so. Overall, the results demonstrate that REDD1 contributes to the pathogenesis of diabetes in the retina by mediating the pathogenic effects of hyperglycemia.


Assuntos
Retinopatia Diabética/metabolismo , Células Ependimogliais/metabolismo , Hiperglicemia/metabolismo , Fatores de Transcrição/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular , Diabetes Mellitus Experimental/metabolismo , Fator de Iniciação 4E em Eucariotos/metabolismo , Fatores de Iniciação em Eucariotos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Fosfoproteínas/metabolismo , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética
14.
J Nutr ; 145(11): 2496-502, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26400964

RESUMO

BACKGROUND: The chronic activation of the mechanistic (mammalian) target of rapamycin in complex 1 (mTORC1) in response to excess nutrients contributes to obesity-associated pathologies. OBJECTIVE: To understand the initial events that ultimately lead to obesity-associated pathologies, the present study assessed mTORC1 responses in the liver after a relatively short exposure to a high-fat diet (HFD). METHODS: Male, obesity-prone rats were meal-trained to consume either a control (CON; 10% of energy from fat) diet or an HFD (60% of energy from fat) for 2 wk. Livers were collected and analyzed for mTORC1 signaling [assessed by changes in phosphorylation of 70-kDa ribosomal protein S6 kinase 1 (p70S6K1) and eukaryotic initiation factor 4E binding protein 1 (4E-BP1)] and potential regulatory mechanisms, including changes in the association of Ras-related GTP binding (Rag) A and RagC with mechanistic target of rapamycin (mTOR) and expression of Sestrin1, Sestrin2, and Sestrin3. RESULTS: Feeding-induced activation of mTORC1 was blunted in the livers of rats fed the HFD compared with those fed the CON diet (p70S6K1 phosphorylation, 19% of CON; 4E-BP1 phosphorylation, 61% of CON). The attenuated response was not due to a change in a kinase also referred to as protein kinase B (Akt) signaling but rather to resistance to amino acid-induced activation of mTORC1, as evidenced by a reduction in the interaction of RagA (69% of CON) and RagC (66% of CON) with mTOR and enhanced expression of the mTORC1 repressors Sestrin2 (132% of CON) and Sestrin3 (143% of CON). The consumption of an HFD led to impaired amino acid-induced activation of mTORC1 as assessed in livers perfused in situ with medium containing various concentrations of amino acids. CONCLUSIONS: These results in rats support a model in which the initial response of the liver to an HFD is an attenuation of, rather than the expected activation of, mTORC1. The initial response likely represents a counterregulatory mechanism to handle the onset of excess nutrients and is caused by enhanced expression of Sestrin2 and Sestrin3, which, in turn, leads to impaired Rag signaling, resulting in resistance to amino acid-induced activation of mTORC1.


Assuntos
Aminoácidos/farmacologia , Dieta Hiperlipídica/efeitos adversos , Fígado/metabolismo , Complexos Multiproteicos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Glicemia/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Imunoprecipitação , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Complexos Multiproteicos/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Obesidade/tratamento farmacológico , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/genética
15.
J Biol Chem ; 288(1): 10-9, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23184952

RESUMO

In this study, the interaction of mTORC1 with its downstream targets p70S6K1 and 4E-BP1 was evaluated in both mouse liver and mouse embryonic fibroblasts following combined disruption of the genes encoding 4E-BP1 and 4E-BP2. Phosphorylation of p70S6K1 was dramatically elevated in the livers of mice lacking 4E-BP1 and 4E-BP2 following feeding-induced activation of mTORC1. Immunoprecipitation of mTORC1 suggested that elevated phosphorylation was the result of enhanced interaction of p70S6K1 with raptor. These findings were extended to a cell culture system wherein loss of 4E-BP1 and 4E-BP2 resulted in elevated interaction of p70S6K1 with IGF1-induced activation of mTORC1 in conjunction with an enhanced rate of p70S6K1 phosphorylation at Thr-389. Furthermore, cotransfecting HA-p70S6K1 with 4E-BP1, but not 4E-BP1(F114A), reduced recovery of mTORC1 in HA-p70S6K1 immunoprecipitates. Together, these findings support the conclusion that, in the absence of 4E-BP proteins, mTORC1-mediated phosphorylation of p70S6K1 is elevated by a reduction in competition between the two substrates for interaction with raptor.


Assuntos
Proteínas de Transporte/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Regulação da Expressão Gênica , Fosfoproteínas/metabolismo , Proteínas/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Ciclo Celular , Fibroblastos/metabolismo , Imunoprecipitação , Fígado/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Knockout , Complexos Multiproteicos , Mutação , Fosforilação , Ligação Proteica , Biossíntese de Proteínas , Proteína Regulatória Associada a mTOR , Transdução de Sinais , Serina-Treonina Quinases TOR , Transfecção
16.
Am J Physiol Endocrinol Metab ; 306(12): E1397-405, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24801387

RESUMO

The present project was designed to investigate phosphorylation of p70S6K1 in an animal model of skeletal muscle overload. Within 24 h of male Sprague-Dawley rats undergoing unilateral tenotomy to induce functional overloading of the plantaris muscle, phosphorylation of the Thr³89 and Thr4²¹/Ser4²4 sites on p70S6K1 was significantly elevated. Since the Thr4²¹/Ser4²4 sites are purportedly mammalian target of rapamycin complex 1 (mTORC1) independent, we sought to identify the kinase(s) responsible for their phosphorylation. Initially, we used IGF-I treatment of serum-deprived HEK-293E cells as an in vitro model system, because IGF-I promotes phosphorylation of p70S6K1 on both the Thr³89 and Thr4²¹/Ser4²4 sites in skeletal muscle and in cells in culture. We found that, whereas the mTOR inhibitor TORIN2 prevented the IGF-I-induced phosphorylation of the Thr4²¹/Ser4²4 sites, it surprisingly enhanced phosphorylation of these sites during serum deprivation. JNK inhibition with SP600125 attenuated phosphorylation of the Thr4²¹/Ser4²4 sites, and in combination with TORIN2 both the effect of IGF-I and the enhanced Thr4²¹/Ser4²4 phosphorylation during serum deprivation were ablated. In contrast, both JNK activation with anisomycin and knockdown of the mTORC2 subunit rictor specifically stimulated phosphorylation of the Thr4²¹/Ser4²4 sites, suggesting that mTORC2 represses JNK-mediated phosphorylation of these sites. The role of JNK in mediating p70S6K1 phosphorylation was confirmed in the animal model noted above, where rats treated with SP600125 exhibited attenuated Thr4²¹/Ser4²4 phosphorylation. Overall, the results provide evidence that the mTORC1 and JNK signaling pathways coordinate the site-specific phosphorylation of p70S6K1. They also identify a novel role for mTORC1 and mTORC2 in the inhibition of JNK.


Assuntos
Transtornos Traumáticos Cumulativos/metabolismo , Modelos Animais de Doenças , Sistema de Sinalização das MAP Quinases , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Complexos Multiproteicos/metabolismo , Músculo Esquelético/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Transtornos Traumáticos Cumulativos/fisiopatologia , Células HEK293 , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Proteína Quinase 8 Ativada por Mitógeno/antagonistas & inibidores , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/genética , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiopatologia , Fosforilação/efeitos dos fármacos , Domínios e Motivos de Interação entre Proteínas , Inibidores de Proteínas Quinases/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteína Companheira de mTOR Insensível à Rapamicina , Ratos , Ratos Sprague-Dawley , Proteínas Quinases S6 Ribossômicas/química , Serina/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética , Treonina/metabolismo
17.
Diabetes ; 73(10): 1553-1562, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38976480

RESUMO

The stress response protein regulated in development and DNA damage response 1 (REDD1) has emerged as a key player in the pathogenesis of diabetes. Diabetes upregulates REDD1 in a variety of insulin-sensitive tissues, where the protein acts to inhibit signal transduction downstream of the insulin receptor. REDD1 functions as a cytosolic redox sensor that suppresses Akt/mTORC1 signaling to reduce energy expenditure in response to cellular stress. Whereas a transient increase in REDD1 contributes to an adaptive cellular response, chronically elevated REDD1 levels are implicated in disease progression. Recent studies highlight the remarkable benefits of both whole-body and tissue-specific REDD1 deletion in preclinical models of type 1 and type 2 diabetes. In particular, REDD1 is necessary for the development of glucose intolerance and the consequent rise in oxidative stress and inflammation. Here, we review studies that support a role for chronically elevated REDD1 levels in the development of diabetes complications, reflect on limitations of prior therapeutic approaches targeting REDD1 in patients, and discuss potential opportunities for future interventions to improve the lives of people living with diabetes. This article is part of a series of Perspectives that report on research funded by the American Diabetes Association Pathway to Stop Diabetes program.


Assuntos
Fatores de Transcrição , Humanos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Animais , Complicações do Diabetes/metabolismo , Transdução de Sinais , Diabetes Mellitus Tipo 2/metabolismo , Estresse Oxidativo , Diabetes Mellitus Tipo 1/metabolismo
18.
Diabetes ; 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39320924

RESUMO

Diabetic nephropathy (DN) is the leading cause of end-stage renal disease and effective treatment modalities that fully address its molecular etiology are lacking. Prior studies support that the stress response protein REDD1 (Regulated in Development and DNA Damage 1) contributes to the development of diabetic complications. This study investigated a potential role for REDD1 expression in podocytes in diabetes-induced podocyte loss and compromised glomerular filtration. Podocyte-specific REDD1 deletion protected against renal injury, as evidenced by reduced albuminuria, glomerular hypertrophy, and mesangial matrix deposition in streptozotocin (STZ)-induced diabetic mice. Podocyte-specific REDD1 expression was required for diabetes-induced reduction in slit diaphragm (SD) proteins podocin and nephrin. Notably, podocyte-specific REDD1 deletion protected against podocytopenia and preserved glomerular basement membrane and foot process architecture in diabetic mice. In the kidneys of diabetic mice and in human podocyte cultures exposed to hyperglycemic conditions, REDD1 was necessary for increased expression of the transient receptor potential canonical 6 (TRPC6) channel. More specifically, REDD1 promoted NF-κB-dependent transcription of TRPC6, intracellular calcium entry, and cytoskeletal remodeling under hyperglycemic conditions. Overall, the findings provide new insight into the role of podocyte-specific REDD1 expression in renal pathology and support the possibility that therapeutics targeting REDD1 in podocytes could be beneficial for DN.

19.
Invest Ophthalmol Vis Sci ; 65(3): 34, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38546584

RESUMO

Purpose: Inflammasome activation has been implicated in the development of retinal complications caused by diabetes. This study was designed to identify signaling events that promote retinal NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome activation in response to diabetes. Methods: Diabetes was induced in mice by streptozotocin administration. Retinas were examined after 16 weeks of diabetes. Human MIO-M1 Müller cells were exposed to hyperglycemic culture conditions. Genetic and pharmacological interventions were used to interrogate signaling pathways. Visual function was assessed in mice using a virtual optomotor system. Results: In the retina of diabetic mice and in Müller cell cultures, NLRP3 and interleukin-1ß (IL-1ß) were increased in response to hyperglycemic conditions and the stress response protein Regulated in Development and DNA damage 1 (REDD1) was required for the effect. REDD1 deletion prevented caspase-1 activation in Müller cells exposed to hyperglycemic conditions and reduced IL-1ß release. REDD1 promoted nuclear factor κB signaling in cells exposed to hyperglycemic conditions, which was necessary for an increase in NLRP3. Expression of a constitutively active GSK3ß variant restored NLRP3 expression in REDD1-deficient cells exposed to hyperglycemic conditions. GSK3 activity was necessary for increased NLRP3 expression in the retina of diabetic mice and in cells exposed to hyperglycemic conditions. Müller glia-specific REDD1 deletion prevented increased retinal NLRP3 levels and deficits in contrast sensitivity in diabetic mice. Conclusions: The data support a role for REDD1-dependent activation of GSK3ß in NLRP3 inflammasome transcriptional priming and in the production of IL-1ß by Müller glia in response to diabetes.


Assuntos
Diabetes Mellitus Experimental , Glicogênio Sintase Quinase 3 beta , Hiperglicemia , Fatores de Transcrição , Animais , Humanos , Camundongos , Dano ao DNA , Glicogênio Sintase Quinase 3 beta/metabolismo , Proteínas de Choque Térmico , Inflamassomos , Interleucina-1beta , Camundongos Endogâmicos NOD , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Retina , Fatores de Transcrição/metabolismo
20.
Geroscience ; 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39367169

RESUMO

Age-related macular degeneration (AMD) is a leading cause of blindness in elderly populations, yet the molecular events that initiate the early retinal defects that lead to visual function deficits remain poorly understood. The studies here explored a role for the stress response protein Regulated in Development and DNA damage response 1 (REDD1) in the development of retinal pathology by using the oxidant stressor sodium iodate (NaIO3) to model dry AMD in mice. REDD1 protein abundance was increased in the retinal pigmented epithelium (RPE) and retina of mice administered NaIO3. In wild-type REDD1+/+ mice, reactive oxygen species (ROS) levels were robustly increased in the outer retinal layers 1 day after NaIO3 administration, with focal areas of increased ROS seen throughout the outer retina after 7 days. In contrast with REDD1+/+ mice, ROS levels were blunted in REDD1-/- mice after NaIO3 administration. REDD1 was also required for upregulated expression of pro-inflammatory factors in the RPE/retina and immune cell activation in the outer retina following NaIO3 administration. In REDD1+/+ mice, NaIO3 reduced RPE65 and rhodopsin levels in the RPE and photoreceptor layers, respectively. Unlike REDD1+/+ mice, REDD1-/- mice did not exhibit disrupted RPE integrity, retinal degeneration, or photoreceptor thinning. Overall, REDD1 deletion was sufficient to prevent retinal oxidative stress, RPE damage, immune cell activation, and photoreceptor loss in response to NaIO3. The findings support a potential role for REDD1 in the development of retinal complications in the context of dry AMD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA