Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Dent ; 142: 104851, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38262586

RESUMO

OBJECTIVE: Clinical assessment of progression of non-carious cervical lesions (NCCLs) is currently based on subjective methods. We hypothesize that 3D digital intraoral scanners (IOS) can provide quantitative outcomes for objective measuring and monitoring of NCCLs. This in vitro study verified the reliability of IOS to monitor dental structure loss of simulated NCCLs, in comparison to a reference bench-top 3D optical profilometer (BTS). METHODS: NCCLs of different severity levels (early, moderate, or severe, n = 150) were simulated in a preceding study. Impressions of the lesions were taken and scanned with both BTS (ProScan; Scantron) and IOS (TRIOS4; 3Shape). Generated 3D images were analyzed for volumetric tooth loss (mm3) by superimposition followed by subtraction analysis. ProForm (Scantron) and WearCompare (Leeds Digital Dentistry) software were used in association to BTS and IOS, respectively. Agreement was assessed using intraclass correlation coefficient (ICC, alpha=0.05) and Bland-Altman plots. RESULTS: ICC (confidence interval at 95 %) between IOS and BTS for all data combined was 0.962 (0.942-0.973), showing excellent reliability. Subset analyses showed that NCCLs with lower volume loss (early- and moderate-stage lesions) resulted in moderate ICCs, whereas severe lesions showed excellent ICC. Bland-Altman plots demonstrated general good agreement, with narrower limits for early stage-lesions. CONCLUSION: IOS data demonstrated good agreement to BTS, when measuring tooth structure loss in simulated NCCLs, with particularly higher ICC in more severe lesions. Considering the accessibility and ease-of-use, IOS showed to be a good alternative for the objective assessment of NCCLs in vitro. CLINICAL SIGNIFICANCE: 3D intraoral scanners' accessibility and objectivity make them potentially valuable tools for assessing and monitoring NCCLs.


Assuntos
Projetos de Pesquisa , Perda de Dente , Humanos , Reprodutibilidade dos Testes , Imageamento Tridimensional
2.
J Dent ; 141: 104827, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38159901

RESUMO

OBJECTIVES: To synthesize and characterize a novel dentin adhesive containing Beta-Tricalcium Phosphate (ß-TCP) nanoparticles and test its ability to reduce dentin permeability (dP). METHODS: Experimental adhesives were prepared by mixing Bis-GMA, TEGDMA, HEMA (50/25/25 wt.%), photo-initiators, and inhibitors. The following groups were tested: Experimental adhesives without ß-TCP (Exp.); with 10 wt.% ß-TCP (Exp.10 wt.% ß-TCP); with 15 wt.% ß-TCP (Exp.15 wt.% ß-TCP), Scotchbond Multi-Purpose (SBMP) and Clearfil SE Protect Bond (CFPB). Degree of conversion (DC%, 10 and 20 s); Flexural Strength (FS), Knoop Hardness (KHN), and Cell Viability (OD%) tests were performed. dP was evaluated by hydraulic conductance, using human dentin disks (n=12), at three-time intervals: post-EDTA (T0); post-treatment (T1); and post-erosion/abrasion cycling (T2). Data were statistically analyzed (α=0.05). RESULTS: For all groups, exposure time for 20 s presented a higher DC% than for 10 s. For FS, filled adhesives did not differ from unfilled and from CFPB. Experimental adhesives did not differ among them and showed lower KHN than the commercial products. Cell viability did not differ among adhesives, except Exp. 15 wt.%, which showed lower OD% than Exp., Exp. 10% and, CFPB. For dP, only Exp.10 and 15 wt.% ß-TCP did not present difference between the times T1 and T2. After cycling, Exp.10 wt.% ß-TCP presented lower permeability than Exp. and CFPB. CONCLUSIONS: The incorporation of 10 wt.% ß-TCP nanoparticles into the resin-based dental material did not affect its mechanical properties and biocompatibility, and promoted the greatest reduction in dentin permeability, sustaining this effect under erosive/abrasive challenges. CLINICAL SIGNIFICANCE: A novel resin-based dental material containing ß-TCP nanoparticles was able to reduce dentin permeability, maintaining its efficacy after erosive/abrasive challenges. The synthesized material did not affect dental pulp cell viability and might be promising for other conditions that require dental remineralization, such as tooth wear and dental caries.


Assuntos
Fosfatos de Cálcio , Colagem Dentária , Cárie Dentária , Nanopartículas , Humanos , Adesivos Dentinários/química , Permeabilidade da Dentina , Cimentos de Resina/farmacologia , Cimentos de Resina/química , Teste de Materiais , Dentina/química , Resistência à Tração , Cimentos Dentários/química
3.
Polymers (Basel) ; 16(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38891413

RESUMO

BACKGROUND: This study investigated effects of rapid high-intensity light-curing (3 s) on increasing transdentinal temperature and cell viability. METHODS: A total of 40 dentin discs (0.5 mm) obtained from human molars were prepared, included in artificial pulp chambers (4.5 × 5 mm), and subjected to four light-curing protocols (n = 5), with a Valo Grand light curing unit: (i) 10 s protocol with a moderate intensity of 1000 mW/cm2 (Valo-10 s); (ii) 3 s protocol with a high intensity of 3200 mW/cm2 (Valo-3 s); (iii) adhesive system + Filtek Bulk-Fill Flow bulk-fill composite resin in 10 s (FBF-10 s); (iv) adhesive system + Tetric PowerFlow bulk-fill composite resin in 3 s (TPF-3 s). Transdentinal temperature changes were recorded with a type K thermocouple. Cell viability was assessed using the MTT assay. Data were analyzed using one-way ANOVA and Tukey tests for comparison between experimental groups (p < 0.05). RESULTS: The 3 s high-intensity light-curing protocol generated a higher temperature than the 10 s moderate-intensity standard (p < 0.001). The Valo-10 s and Valo-3 s groups demonstrated greater cell viability than the FBF-10s and TPF-3 s groups and statistical differences were observed between the Valo-3 s and FBF-10 s groups (p = 0.023) and Valo-3 s and TPF-3 s (p = 0.025), with a potential cytotoxic effect for the FBF-10 s and TPF-3 s groups. CONCLUSIONS: The 3 s rapid high-intensity light-curing protocol of bulk-fill composite resins caused a temperature increase greater than 10 s and showed cell viability similar to and comparable to the standard protocol.

4.
Restor Dent Endod ; 47(3): e32, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36090509

RESUMO

Objectives: This study aimed to evaluate the influence of inorganic composition and filler particle morphology on the mechanical properties of different self-adhesive resin cements (SARCs). Materials and Methods: Three SARCs including RelyX Unicem-2 (RUN), Maxcem Elite (MAX), and Calibra Universal (CAL) were tested. Rectangular bar-shaped specimens were prepared for flexural strength (FS) and flexural modulus (FM) and determined by a 3-point bending test. The Knoop microhardness (KHN) and top/bottom microhardness ratio (%KHN) were conducted on the top and bottom faces of disc-shaped samples. Sorption (Wsp) and solubility (Wsl) were evaluated after 24 hours of water immersion. Filler morphology was analyzed by scanning electron microscopy and X-ray energy dispersive spectroscopy (EDS). FS, FM, %KHN, Wsp, Wsl, and EDS results were submitted to 1-way analysis of variance and Tukey's post-hoc test, and KHN also to paired t-test (α = 0.05). Results: SARC-CAL presented the highest FS value, and SARC-RUN presented the highest FM. SARC-MAX and RUN showed the lowest Wsp and Wsl values. KHN values decreased from top to bottom and the SARCs did not differ statistically. Also, all resin cements presented carbon, aluminum, and silica in their composition. SARC-MAX and RUN showed irregular and splintered particles while CAL presented small and regular size particles. Conclusions: A higher mechanical strength can be achieved by a reduced spread in grit size and the filler morphology can influence the KHN, as well as photoinitiators in the composition. Wsp and Wsl can be correlated with ions diffusion of inorganic particles.

5.
Dent Mater ; 36(3): e85-e92, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32019690

RESUMO

OBJECTIVES: The aim of this study was to determine the physico-mechanical properties of a high viscosity glass ionomer cement (GIC) reinforced with TiO2 nanotubes (TiO2-nt). METHODS: TiO2-nt was incorporated into the GIC powder components (Ketac Molar EasyMix™) in concentrations of 0% (control group), 3%, 5%, 7% by weight. Compressive strength (n = 10/group), three point bending for flexural strength (n = 18/group), microshear bond strength to dentin and failure mode (n = 20/group), and surface roughness and weight loss before and after brushing simulation (30,000 cycles) (n = 8/group) were evaluated. Data were submitted to Shapiro-Wilk, ANOVA, Tukey and Chi-square tests (α ≤ 0.05). RESULTS: Addition of 5% of TiO2-nt into GIC presented the highest values for compressive strength and differed from the control, 3% and 7% groups (p = 0.023). There were no significant differences in flexural strength (p = 0.107) and surface roughness before and after the dental brushing (p = 0.287) among the groups. GIC added with 5% TiO2-nt showed the lowest weight loss values (p = 0.01), whereas the control, 3% or 5% TiO2-nt groups presented similar microshear bond strength values (p ≥ 0.05). The 5% TiO2-nt group featured higher microshear bond strength than the 7% TiO2-nt group (p = 0.034). Cohesive in material was the most representative failure mode for all groups. SIGNIFICANCE: The incorporation of TiO2-nt did not affect GIC's adhesiveness to dentin, but improved its compressive strength at 5%. Furthermore, TiO2-nt decreased the percentage of weight loss after GIC's surface wear.


Assuntos
Colagem Dentária , Nanotubos , Cimentos de Ionômeros de Vidro , Teste de Materiais , Propriedades de Superfície , Titânio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA