Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(1): 248-258, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34949090

RESUMO

Earth-abundant transition metal phosphides are promising materials for energy-related applications. Specifically, copper(I) phosphide is such a material and shows excellent photocatalytic activity. Currently, there are substantial research efforts to synthesize well-defined metal-semiconductor nanoparticle heterostructures to enhance the photocatalytic performance by an efficient separation of charge carriers. The involved crystal facets and heterointerfaces have a major impact on the efficiency of a heterostructured photocatalyst, which points out the importance of synthesizing potential photocatalysts in a controlled manner and characterizing their structural and morphological properties in detail. In this study, we investigated the interface dynamics occurring around the synthesis of Ag-Cu3P nanoparticle heterostructures by a chemical reaction between Ag-Cu nanoparticle heterostructures and phosphine in an environmental transmission electron microscope. The major product of the Cu-Cu3P phase transformation using Ag-Cu nanoparticle heterostructures with a defined interface as a template preserved the initially present Ag{111} facet of the heterointerface. After the complete transformation, corner truncation of the faceted Cu3P phase led to a physical transformation of the nanoparticle heterostructure. In some cases, the structural rearrangement toward an energetically more favorable heterointerface has been observed and analyzed in detail at the atomic level. The herein-reported results will help better understand dynamic processes in Ag-Cu3P nanoparticle heterostructures and enable facet-engineered surface and heterointerface design to tailor their physical properties.

2.
Langmuir ; 37(3): 1089-1101, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33417766

RESUMO

Boiling heat transfer intensification is of significant relevance to energy conversion and various cooling processes. This study aimed to enhance the saturated pool boiling of FC-72 (a dielectric liquid) by surface modifications and explore mechanisms of the enhancement. Specifically, circular and square micro pin fins were fabricated on silicon surfaces by dry etching and then copper nanoparticles were deposited on the micro-pin-fin surfaces by electrostatic deposition. Experimental results indicated that compared with a smooth surface, the micro pin fins increased the heat transfer coefficient and the critical heat flux by more than 200 and 65-83%, respectively, which were further enhanced by the nanoparticles up to 24% and more than 20%, respectively. Correspondingly, the enhancement mechanism was carefully explored by high-speed bubble visualizations, surface wickability measurements, and model analysis. It was quantitatively found that small bubble departure diameters with high bubble departure frequencies promoted high heat transfer coefficients. The wickability, which characterizes the ability of a liquid to rewet a surface, played an important role in determining the critical heat flux, but further analyses indicated that evaporation beneath bubbles was also essential and competition between the wicking and the evaporation finally triggered the critical heat flux.

3.
Nanotechnology ; 32(2): 025605, 2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-32987376

RESUMO

Cost- and resource-efficient growth is necessary for many applications of semiconductor nanowires. We here present the design, operational details and theory behind Aerotaxy, a scalable alternative technology for producing quality crystalline nanowires at a remarkably high growth rate and throughput. Using size-controlled Au seed particles and organometallic precursors, Aerotaxy can produce nanowires with perfect crystallinity and controllable dimensions, and the method is suitable to meet industrial production requirements. In this report, we explain why Aerotaxy is an efficient method for fabricating semiconductor nanowires and explain the technical aspects of our custom-built Aerotaxy system. Investigations using SEM (scanning electron microscope), TEM (transmission electron microscope) and other characterization methods are used to support the claim that Aerotaxy is indeed a scalable method capable of producing nanowires with reproducible properties. We have investigated both binary and ternary III-V semiconductor material systems like GaAs and GaAsP. In addition, common aspects of Aerotaxy nanowires deduced from experimental observations are used to validate the Aerotaxy growth model, based on a computational flow dynamics (CFD) approach. We compare the experimental results with the model behaviour to better understand Aerotaxy growth.

4.
Nano Lett ; 19(4): 2723-2730, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30888174

RESUMO

The opportunity to engineer III-V nanowires in wurtzite and zinc blende crystal structure allows for exploring properties not conventionally available in the bulk form as well as opening the opportunity for use of additional degrees of freedom in device fabrication. However, the fundamental understanding of the nature of polytypism in III-V nanowire growth is still lacking key ingredients to be able to connect the results of modeling and experiments. Here we show InP nanowires of both pure wurtzite and pure zinc blende grown simultaneously on the same InP [100]-oriented substrate. We find wurtzite nanowires to grow along [Formula: see text] and zinc blende counterparts along [Formula: see text]. Further, we discuss the nucleation, growth, and polytypism of our nanowires against the background of existing theory. Our results demonstrate, first, that the crystal growth conditions for wurtzite and zinc blende nanowire growth are not mutually exclusive and, second, that the interface energies predominantly determine the crystal structure of the nanowires.


Assuntos
Cristalização , Nanofios/química , Zinco/química , Tamanho da Partícula , Especificidade por Substrato , Propriedades de Superfície
5.
Nano Lett ; 18(1): 144-151, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29257691

RESUMO

Semiconductors are essential for modern electronic and optoelectronic devices. To further advance the functionality of such devices, the ability to fabricate increasingly complex semiconductor nanostructures is of utmost importance. Nanowires offer excellent opportunities for new device concepts; heterostructures have been grown in either the radial or axial direction of the core nanowire but never along both directions at the same time. This is a consequence of the common use of a foreign metal seed particle with fixed size for nanowire heterostructure growth. In this work, we present for the first time a growth method to control heterostructure growth in both the axial and the radial directions simultaneously while maintaining an untapered self-seeded growth. This is demonstrated for the InAs/InAs1-xPx material system. We show how the dimensions and composition of such axio-radial nanowire heterostructures can be designed including the formation of a "pseudo-superlattice" consisting of five separate InAs1-xPx segments with varying length. The growth of axio-radial nanowire heterostructures offers an exciting platform for novel nanowire structures applicable for fundamental studies as well as nanowire devices. The growth concept for axio-radial nanowire heterostructures is expected to be fully compatible with Si substrates.

6.
Nanotechnology ; 29(28): 285601, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-29664421

RESUMO

Controlled doping in semiconductor nanowires modifies their electrical and optical properties, which are important for high efficiency optoelectronic devices. We have grown n-type (Sn) doped GaAs nanowires in Aerotaxy, a new continuous gas phase mass production technique. The morphology of Sn doped nanowires is found to be a strong function of dopant, tetraethyltin to trimethylgallium flow ratio, Au-Ga-Sn alloying, and nanowire growth temperatures. High temperature and high flow ratios result in low morphological quality nanowires and in parasitic growth on the wire base and surface. Alloying and growth temperatures of 400 °C and 530 °C, respectively, resulted in good morphological quality nanowires for a flow ratio of TESn to TMGa up to 2.25 × 10-3. The wires are pure zinc-blende for all investigated growth conditions, whereas nanowires grown by metal-organic vapor phase epitaxy with the same growth conditions are usually mainly Wurtzite. The growth rate of the doped wires is found to be dependent more on the TESn flow fraction than on alloying and nanowire growth temperatures. Our photoluminescence measurements, supported by four-point probe resistivity measurements, reveal that the carrier concentration in the doped wires varies only slightly (1-3) × 1019 cm-3 with TESn flow fraction and both alloying and growth temperatures, indicating that good morphological quality wires with high carrier density can be grown with low TESn flow. Carrier concentrations lower than 1019 cm-3 can be grown by further reducing the flow fraction of TESn, which may give better morphology wires.

7.
Nature ; 492(7427): 90-4, 2012 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-23201685

RESUMO

Semiconductor nanowires are key building blocks for the next generation of light-emitting diodes, solar cells and batteries. To fabricate functional nanowire-based devices on an industrial scale requires an efficient methodology that enables the mass production of nanowires with perfect crystallinity, reproducible and controlled dimensions and material composition, and low cost. So far there have been no reports of reliable methods that can satisfy all of these requirements. Here we show how aerotaxy, an aerosol-based growth method, can be used to grow nanowires continuously with controlled nanoscale dimensions, a high degree of crystallinity and at a remarkable growth rate. In our aerotaxy approach, catalytic size-selected Au aerosol particles induce nucleation and growth of GaAs nanowires with a growth rate of about 1 micrometre per second, which is 20 to 1,000 times higher than previously reported for traditional, substrate-based growth of nanowires made of group III-V materials. We demonstrate that the method allows sensitive and reproducible control of the nanowire dimensions and shape--and, thus, controlled optical and electronic properties--through the variation of growth temperature, time and Au particle size. Photoluminescence measurements reveal that even as-grown nanowires have good optical properties and excellent spectral uniformity. Detailed transmission electron microscopy investigations show that our aerotaxy-grown nanowires form along one of the four equivalent〈111〉B crystallographic directions in the zincblende unit cell, which is also the preferred growth direction for III-V nanowires seeded by Au particles on a single-crystal substrate. The reported continuous and potentially high-throughput method can be expected substantially to reduce the cost of producing high-quality nanowires and may enable the low-cost fabrication of nanowire-based devices on an industrial scale.

8.
Nano Lett ; 16(9): 5701-7, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27564139

RESUMO

We have grown GaAsP nanowires with high optical and structural quality by Aerotaxy, a new continuous gas phase mass production process to grow III-V semiconductor based nanowires. By varying the PH3/AsH3 ratio and growth temperature, size selected GaAs1-xPx nanowires (80 nm diameter) with pure zinc-blende structure and with direct band gap energies ranging from 1.42 to 1.90 eV (at 300 K), (i.e., 0 ≤ x ≤ 0.43) were grown, which is the energy range needed for creating tandem III-V solar cells on silicon. The phosphorus content in the NWs is shown to be controlled by both growth temperature and input gas phase ratio. The distribution of P in the wires is uniform over the length of the wires and among the wires. This proves the feasibility of growing GaAsP nanowires by Aerotaxy and results indicate that it is a generic process that can be applied to the growth of other III-V semiconductor based ternary nanowires.

9.
Nanotechnology ; 27(45): 455704, 2016 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-27713183

RESUMO

In this paper we have investigated the dynamics of photo-generated charge carriers in a series of aerotaxy-grown GaAs nanowires (NWs) with different levels of Zn doping. Time-resolved photo-induced luminescence and transient absorption have been employed to investigate radiative (band edge transition) and non-radiative charge recombination processes, respectively. We find that the photo-luminescence (PL) lifetime of intrinsic GaAs NWs is significantly increased after growing an AlGaAs shell over them, indicating that an AlGaAs shell can effectively passivate the surface of aerotaxy-grown GaAs NWs. We observe that PL decay time as well as PL intensity decrease with increasing Zn doping, which can be attributed to thermally activated electron trapping with the trap density increased due to the Zn doping level.

10.
J Synchrotron Radiat ; 22(1): 59-66, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25537589

RESUMO

The spatial strain distribution in and around a single axial InAs 1-x Px hetero-segment in an InAs nanowire was analyzed using nano-focused X-ray diffraction. In connection with finite-element-method simulations a detailed quantitative picture of the nanowire's inhomogeneous strain state was achieved. This allows for a detailed understanding of how the variation of the nanowire's and hetero-segment's dimensions affect the strain in its core region and in the region close to the nanowire's side facets. Moreover, ensemble-averaging high-resolution diffraction experiments were used to determine statistical information on the distribution of wurtzite and zinc-blende crystal polytypes in the nanowires.

11.
Nano Lett ; 13(9): 4099-105, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-23902379

RESUMO

III-V-based nanowires usually exhibit random mixtures of wurtzite (WZ) and zinc blende (ZB) crystal structure, and pure crystal phase wires represent the exception rather than the rule. In this work, the effective group V hydride flow was the only growth parameter which was changed during MOVPE growth to promote transitions from WZ to ZB and from ZB to WZ. Our technique works in the same way for all investigated III-Vs (GaP, GaAs, InP, and InAs), with low group V flow for WZ and high group V flow for ZB conditions. This strongly suggests a common underlying mechanism. It displays to our best knowledge the simplest changes of the growth condition to control the nanowire crystal structure. The inherent reduction of growth variables is a crucial requirement for the interpretation in the frame of existing understanding of polytypism in III-V nanowires. We show that the change in surface energetics of the vapor-liquid-solid system at the vapor-liquid and liquid-solid interface is likely to control the crystal structure in our nanowires.

12.
Nanotechnology ; 24(41): 415303, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-24060650

RESUMO

Etching is an essential tool for the creation of nanostructures, where patterned metal structures can be used as masks. Here, we investigate HCl gas etching of InP substrates decorated with Au nanoparticles, and find that the etch rate is strongly increased at the Au-InP interfaces. The {111}A facets of the InP are preferentially etched. The metal nanoparticles follow in the etch direction, thereby creating nanopores. The size and position of the pores is controlled by the Au nanoparticles, and we measure nanopores as thin as 20 nm with an aspect ratio of 25:1. The direction of the nanopores is influenced by the temperature and the substrate orientation, which we use to demonstrate lateral, vertical and inclined nanopores. We explain the process by a solid-liquid-vapor model, in which the liquid metal particle catalyzes the dissolution of the solid InP.

13.
ACS Nano ; 17(8): 7674-7684, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37017472

RESUMO

Metal-semiconductor nanoparticle heterostructures are exciting materials for photocatalytic applications. Phase and facet engineering are critical for designing highly efficient catalysts. Therefore, understanding processes occurring during the nanostructure synthesis is crucial to gain control over properties such as the surface and interface facets' orientations, morphology, and crystal structure. However, the characterization of nanostructures after the synthesis makes clarifying their formation mechanisms nontrivial and sometimes even impossible. In this study, we used an environmental transmission electron microscope with an integrated metal-organic chemical vapor deposition system to enlighten fundamental dynamic processes during the Ag-Cu3P-GaP nanoparticle synthesis using Ag-Cu3P seed particles. Our results reveal that the GaP phase nucleated at the Cu3P surface, and growth proceeded via a topotactic reaction involving counter-diffusion of Cu+ and Ga3+ cations. After the initial GaP growth steps, the Ag and Cu3P phases formed specific interfaces with the GaP growth front. GaP growth proceeded by a similar mechanism observed for the nucleation involving the diffusion of Cu atoms through/along the Ag phase toward other regions, followed by the redeposition of Cu3P at a specific Cu3P crystal facet, not in contact with the GaP phase. The Ag phase was essential for this process by acting as a medium enabling the efficient transport of Cu atoms away from and, simultaneously, Ga atoms toward the GaP-Cu3P interface. This study shows that enlightening fundamental processes is critical for progress in synthesizing phase- and facet-engineered multicomponent nanoparticles with tailored properties for specific applications, including catalysis.

14.
Nanotechnology ; 23(26): 265704, 2012 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-22699683

RESUMO

Cathodoluminescence at 8 K is used to compare the optical properties of AlGaAs-capped GaAs nanowires, grown by metal-organic vapour phase epitaxy and seeded by gold particles prepared by different methods. Six different methods were used to fabricate and deposit gold seed particles onto GaAs substrates: colloid particles, aerosol particles and particles defined by electron beam lithography. The nanowires were grown with and without an in situ annealing step prior to the nanowire growth. The morphology showed no significant differences between the nanowires. The emissions from ensembles of nanowires have the same peak position, irrespective of seed particle type. Without the in situ annealing step prior to the nanowire growth, there are significant differences in the emission intensity and emission patterns from nanowires grown from different seed particles. When an in situ annealing step is included, all the resulting nanowires show identical optical emission intensity and emission patterns. This shows the importance of using an in situ annealing step prior to growth. This study demonstrates that different preparation methods for gold seed particles can be used to produce GaAs nanowires with highly similar optical properties. The choice of particle preparation method to be used can therefore be based on availability and cost.

15.
Phys Chem Chem Phys ; 14(14): 4796-801, 2012 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-22361687

RESUMO

The structure and chemical composition of Pd nanoparticles exposed to pure CO and mixtures of CO and O(2) at elevated temperatures have been studied in situ by a combination of X-ray Diffraction and X-ray Photoelectron Spectroscopy in pressures ranging from ultra high vacuum to 10 mbar and from room temperature to a few hundred degrees celsius. Our investigation shows that under CO exposure, above a certain temperature, carbon dissolves into the Pd particles forming a carbide phase. Upon exposure to CO and O(2) mixtures, the carbide phase forms and disappears reversibly, switching at the stoichiometric ratio for CO oxidation. This finding opens new scenarios for the understanding of catalytic oxidation of C-based molecules.

16.
Nano Lett ; 11(5): 2028-31, 2011 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-21456545

RESUMO

Tandem InP nanowire pn-junctions have been grown on a Si substrate using metal-organic vapor phase epitaxy. In situ HCl etching allowed the different subcomponents to be stacked on top of each other in the axial extension of the nanowires without detrimental radial growth. Electro-optical measurements on a single nanowire tandem pn-junction device show an open-circuit voltage of 1.15 V under illumination close to 1 sun, which is an increase of 67% compared to a single pn-junction device.

17.
Nano Lett ; 11(6): 2286-90, 2011 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-21604708

RESUMO

We have grown InP nanowires doped with hydrogen sulfide, which exhibit sulfur concentrations of up to 1.4%. The highest doped nanowires show a pure wurtzite crystal structure, in contrast to bulk InP which has the zinc blende structure. The nanowires display photoluminescence which is strongly blue shifted compared with the band gap, well into the visible range. We find evidence of a second conduction band minimum at the gamma point about 0.23 eV above the band edge, in excellent agreement with recent theoretical predictions. Electrical measurements show high conductivity and breakdown currents of 10(7) A/cm(2).


Assuntos
Índio/química , Nanofios/química , Fosfinas/química , Condutividade Elétrica , Sulfeto de Hidrogênio/química , Propriedades de Superfície , Zinco/química
18.
Nano Lett ; 11(9): 3935-40, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21848314

RESUMO

We report on highly Mn-doped GaAs nanowires (NWs) of high crystalline quality fabricated by ion beam implantation, a technique that allows doping concentrations beyond the equilibrium solubility limit. We studied two approaches for the preparation of Mn-doped GaAs NWs: First, ion implantation at room temperature with subsequent annealing resulted in polycrystalline NWs and phase segregation of MnAs and GaAs. The second approach was ion implantation at elevated temperatures. In this case, the single-crystallinity of the GaAs NWs was maintained, and crystalline, highly Mn-doped GaAs NWs were obtained. The electrical resistance of such NWs dropped with increasing temperature (activation energy about 70 meV). Corresponding magnetoresistance measurements showed a decrease at low temperatures, indicating paramagnetism. Our findings suggest possibilities for future applications where dense arrays of GaMnAs nanowires may be used as a new kind of magnetic material system.

19.
Nanotechnology ; 22(14): 145603, 2011 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-21346304

RESUMO

In this work we demonstrate experimentally the dependence of InSb crystal structure on the ratio of Sb to In atoms at the growth front. Epitaxial InSb wires are grown by a self-seeded particle assisted growth technique on several different III-V substrates. Detailed investigations of growth parameters and post-growth energy dispersive x-ray spectroscopy indicate that the seed particles initially consist of In and incorporate up to 20 at.% Sb during growth. By applying this technique we demonstrate the formation of zinc-blende, 4H and wurtzite structure in the InSb wires (identified by transmission electron microscopy and synchrotron x-ray diffraction), and correlate this sequential change in crystal structure to the increasing Sb/In ratio at the particle-wire interface. The low ionicity of InSb and the large diameter of the wire structures studied in this work are entirely outside the parameters for which polytype formation is predicted by current models of particle seeded wire growth, suggesting that the V/III ratio at the interface determines crystal structure in a manner well beyond current understanding. These results therefore provide important insight into the relationship between the particle composition and the crystal structure, and demonstrate the potential to selectively tune the crystal structure in other III-V compound materials as well.

20.
J Cryst Growth ; 334(1): 51-56, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22053114

RESUMO

In this work, the nucleation and growth of InAs nanowires on patterned SiO(2)/Si(111) substrates is studied. It is found that the nanowire yield is strongly dependent on the size of the etched holes in the SiO(2), where openings smaller than 180 nm lead to a substantial decrease in nucleation yield, while openings larger than ≈500nm promote nucleation of crystallites rather than nanowires. We propose that this is a result of indium particle formation prior to nanowire growth, where the size of the indium particles, under constant growth parameters, is strongly influenced by the size of the openings in the SiO(2) film. Nanowires overgrowing the etched holes, eventually leading to a merging of neighboring nanowires, shed light into the growth mechanism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA