Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Bacteriol ; 196(2): 300-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24187084

RESUMO

The cell envelope of Gram-negative bacteria is an essential organelle that is important for cell shape and protection from toxic compounds. Proteins involved in envelope biogenesis are therefore attractive targets for the design of new antibacterial agents. In a search for new envelope assembly factors, we screened a collection of Escherichia coli deletion mutants for sensitivity to detergents and hydrophobic antibiotics, a phenotype indicative of defects in the cell envelope. Strains lacking yciM were among the most sensitive strains of the mutant collection. Further characterization of yciM mutants revealed that they display a thermosensitive growth defect on low-osmolarity medium and that they have a significantly altered cell morphology. At elevated temperatures, yciM mutants form bulges containing cytoplasmic material and subsequently lyse. We also discovered that yciM genetically interacts with envC, a gene encoding a regulator of the activity of peptidoglycan amidases. Altogether, these results indicate that YciM is required for envelope integrity. Biochemical characterization of the protein showed that YciM is anchored to the inner membrane via its N terminus, the rest of the protein being exposed to the cytoplasm. Two CXXC motifs are present at the C terminus of YciM and serve to coordinate a redox-sensitive iron center of the rubredoxin type. Both the N-terminal membrane anchor and the C-terminal iron center of YciM are important for function.


Assuntos
Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiologia , Proteínas de Membrana/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Bacteriólise , Meios de Cultura/química , Endopeptidases/metabolismo , Escherichia coli/citologia , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/efeitos da radiação , Proteínas de Escherichia coli/genética , Deleção de Genes , Temperatura Alta , Ferro/metabolismo , Proteínas de Membrana/genética , Microscopia , Dados de Sequência Molecular , Pressão Osmótica , Ligação Proteica , Mapeamento de Interação de Proteínas , Alinhamento de Sequência
2.
Adv Exp Med Biol ; 748: 41-64, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22729854

RESUMO

Depending on the organism, mitochondria consist approximately of 500-1,400 different proteins. By far most of these proteins are encoded by nuclear genes and synthesized on cytosolic ribosomes. Targeting signals direct these proteins into mitochondria and there to their respective subcompartment: the outer membrane, the intermembrane space (IMS), the inner membrane, and the matrix. Membrane-embedded translocation complexes allow the translocation of proteins across and, in the case of membrane proteins, the insertion into mitochondrial membranes. A small number of proteins are encoded by the mitochondrial genome: Most mitochondrial translation products represent hydrophobic proteins of the inner membrane which-together with many nuclear-encoded proteins-form the respiratory chain complexes. This chapter gives an overview on the mitochondrial protein translocases and the mechanisms by which they drive the transport and assembly of mitochondrial proteins.


Assuntos
Proteínas Mitocondriais/fisiologia , Animais , Complexo IV da Cadeia de Transporte de Elétrons/fisiologia , Humanos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Nucleares/fisiologia , Transporte Proteico
3.
PLoS One ; 7(7): e40795, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22848402

RESUMO

Hsp90 is an essential chaperone that is necessary for the folding, stability and activity of numerous proteins. In this study, we demonstrate that free radicals formed during oxidative stress conditions can cleave Hsp90. This cleavage occurs through a Fenton reaction which requires the presence of redox-active iron. As a result of the cleavage, we observed a disruption of the chaperoning function of Hsp90 and the degradation of its client proteins, for example, Bcr-Abl, RIP, c-Raf, NEMO and hTert. Formation of Hsp90 protein radicals on exposure to oxidative stress was confirmed by immuno-spin trapping. Using a proteomic analysis, we determined that the cleavage occurs in a conserved motif of the N-terminal nucleotide binding site, between Ile-126 and Gly-127 in Hsp90ß, and between Ile-131 and Gly-132 in Hsp90α. Given the importance of Hsp90 in diverse biological functions, these findings shed new light on how oxidative stress can affect cellular homeostasis.


Assuntos
Proteínas de Choque Térmico HSP90/metabolismo , Ferro/metabolismo , Estresse Oxidativo/fisiologia , Proteólise , Espécies Reativas de Oxigênio/metabolismo , Motivos de Aminoácidos , Proteínas de Choque Térmico HSP90/química , Homeostase/fisiologia , Humanos , Ferro/química , Células K562 , Oxirredução , Espécies Reativas de Oxigênio/química
4.
Antioxid Redox Signal ; 15(1): 49-66, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20849374

RESUMO

The identification of protein disulfide isomerase, almost 50 years ago, opened the way to the study of oxidative protein folding. Oxidative protein folding refers to the composite process by which a protein recovers both its native structure and its native disulfide bonds. Pathways that form disulfide bonds have now been unraveled in the bacterial periplasm (disulfide bond protein A [DsbA], DsbB, DsbC, DsbG, and DsbD), the endoplasmic reticulum (protein disulfide isomerase and Ero1), and the mitochondrial intermembrane space (Mia40 and Erv1). This review summarizes the current knowledge on disulfide bond formation in both prokaryotes and eukaryotes and highlights the major problems that remain to be solved.


Assuntos
Dissulfetos/química , Dissulfetos/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Dobramento de Proteína
5.
Science ; 326(5956): 1109-11, 2009 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-19965429

RESUMO

The thiol group of the amino acid cysteine can be modified to regulate protein activity. The Escherichia coli periplasm is an oxidizing environment in which most cysteine residues are involved in disulfide bonds. However, many periplasmic proteins contain single cysteine residues, which are vulnerable to oxidation to sulfenic acids and then irreversibly modified to sulfinic and sulfonic acids. We discovered that DsbG and DsbC, two thioredoxin-related proteins, control the global sulfenic acid content of the periplasm and protect single cysteine residues from oxidation. DsbG interacts with the YbiS protein and, along with DsbC, regulates oxidation of its catalytic cysteine residue. Thus, a potentially widespread mechanism controls sulfenic acid modification in the cellular environment.


Assuntos
Cisteína/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Oxirredutases/metabolismo , Periplasma/metabolismo , Proteínas Periplásmicas/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Cisteína/química , Dissulfetos/química , Dissulfetos/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Modelos Biológicos , Dados de Sequência Molecular , Oxirredução , Oxirredutases/química , Oxirredutases/genética , Proteínas Periplásmicas/química , Proteínas Periplásmicas/genética , Ligação Proteica , Isomerases de Dissulfetos de Proteínas/química , Isomerases de Dissulfetos de Proteínas/genética , Proteômica , Especificidade por Substrato , Ácidos Sulfênicos/metabolismo
6.
Mol Microbiol ; 67(2): 336-49, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18036138

RESUMO

In Escherichia coli, DsbA introduces disulphide bonds into secreted proteins. DsbA is recycled by DsbB, which generates disulphides from quinone reduction. DsbA is not known to have any proofreading activity and can form incorrect disulphides in proteins with multiple cysteines. These incorrect disulphides are thought to be corrected by a protein disulphide isomerase, DsbC, which is kept in the reduced and active configuration by DsbD. The DsbC/DsbD isomerization pathway is considered to be isolated from the DsbA/DsbB pathway. We show that the DsbC and DsbA pathways are more intimately connected than previously thought. dsbA(-)dsbC(-) mutants have a number of phenotypes not exhibited by either dsbA(-), dsbC(-) or dsbA(-)dsbD(-) mutations: they exhibit an increased permeability of the outer membrane, are resistant to the lambdoid phage Phi80, and are unable to assemble the maltoporin LamB. Using differential two-dimensional liquid chromatographic tandem mass spectrometry/mass spectrometry analysis, we estimated the abundance of about 130 secreted proteins in various dsb(-) strains. dsbA(-)dsbC(-) mutants exhibit unique changes at the protein level that are not exhibited by dsbA(-)dsbD(-) mutants. Our data indicate that DsbC can assist DsbA in a DsbD-independent manner to oxidatively fold envelope proteins. The view that DsbC's function is limited to the disulphide isomerization pathway should therefore be reinterpreted.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Cisteína/metabolismo , Dissulfetos/metabolismo , Escherichia coli/enzimologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Espectrometria de Massas , Modelos Moleculares , Análise de Sequência com Séries de Oligonucleotídeos , Oxirredução , Proteínas Periplásmicas/química , Proteínas Periplásmicas/isolamento & purificação , Proteínas Periplásmicas/metabolismo , Fenótipo , Isomerases de Dissulfetos de Proteínas/química , Isomerases de Dissulfetos de Proteínas/genética , Dobramento de Proteína , Análise de Sequência de Proteína , Deleção de Sequência , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA