Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 40(22): 11599-11609, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38768448

RESUMO

Molecular simulations were conducted to provide a better description of the poly(glycerol sebacate) (PGS)-water interface. The density and the glass-transition temperature as well as their dependencies on the degree of esterification were examined in close connection with the available experimental data. The work of adhesion and water contact angle were calculated as a function of the degree of esterification. A direct correlation was established between the strength of the hydrogen bond network in the interfacial region and the change in the water contact angle with respect to the degree of esterification. The interfacial region was described by local density profiles and orientations of the water molecules.

2.
J Chem Inf Model ; 64(10): 4112-4120, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38703106

RESUMO

Understanding the mechanisms influencing poly(ethylene terephthalate) (PET) biodegradation is crucial for developing innovative strategies to accelerate the breakdown of this persistent plastic. In this study, we employed all-atom molecular dynamics simulation to investigate the adsorption process of the LCC-ICCG cutinase enzyme onto the PET surface. Our results revealed that hydrophobic, π-π, and H bond interactions, specifically involving aliphatic, aromatic, and polar uncharged amino acids, were the primary driving forces for the adsorption of the cutinase enzyme onto PET. Additionally, we observed a negligible change in the enzyme's tertiary structure during the interaction with PET (RMSD = 1.35 Å), while its secondary structures remained remarkably stable. Quantitative analysis further demonstrated that there is about a 24% decrease in the number of enzyme-water hydrogen bonds upon adsorption onto the PET surface. The significance of this study lies in unraveling the molecular intricacies of the adsorption process, providing valuable insights into the initial steps of enzymatic PET degradation.


Assuntos
Hidrolases de Éster Carboxílico , Estabilidade Enzimática , Simulação de Dinâmica Molecular , Polietilenotereftalatos , Polietilenotereftalatos/química , Polietilenotereftalatos/metabolismo , Adsorção , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/metabolismo , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas
3.
J Chem Phys ; 160(6)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38349636

RESUMO

With the aim of producing realistic coarse-grained models of homopolymers, we introduce a tabulated backbone-oriented anisotropic potential. The parameters of the model are optimized using statistical trajectory matching. The impact of grain anisotropy is evaluated at different coarse-graining levels using cis-polybutadiene as a test case. We show that, at the same time, tuning the aspect ratio of the grains can lead to a better density and structure and may reduce the unphysical bond crossings by up to 90%, without increasing the computation time too much and thereby jeopardizing the main advantage of coarse-grained models.

4.
J Chem Phys ; 156(23): 234705, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35732516

RESUMO

We reported molecular simulations of the interactions among water, an epoxy prepolymer diglycidic ether of bisphenol A (DGEBA), and a hardener isophorone diamine (IPDA) on an aluminum surface. This work proposes a comprehensive thermodynamic characterization of the adhesion process from the calculation of different interfacial tensions. The cross-interactions between the atoms of the metal surface and different molecules are adjusted so as to reproduce the experimental work of adhesion. Water nanodroplets on the metal surface are then simulated to predict their contact angle. Liquid-vapor surface tensions of the epoxy prepolymer (DGEBA) and hardener (IPDA) and the solid-vapor surface tension of the aluminum surface are also calculated to provide the solid-liquid interfacial tension that remains very difficult to obtain from the mechanical definition.

5.
J Chem Phys ; 154(12): 124901, 2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33810686

RESUMO

The parameterization of rheological models for polymers is often obtained from experiments via the top-down approach. This procedure allows us to determine good fitting parameters for homogeneous materials but is less effective for polymer mixtures. From a molecular simulation point of view, the timescales needed to derive those parameters are often accessed through the use of coarse-grain potentials. However, these potentials are often derived from linear model systems and the transferability to a more complex structure is not straightforward. Here, we verify the transferability of a potential computed from linear polymer simulations to more complex molecular shapes and present a type of analysis, which was recently formulated in the framework of a tube theory, to a coarse-grain molecular approach in order to derive the input parameters for a rheological model. We describe the different behaviors arising from the local topological structure of molecular sub-units. Coarse-grain models and mean-field based tube theory for polymers form a powerful combination with potentially important applications.

6.
J Chem Phys ; 154(23): 234902, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34241267

RESUMO

We examine the behavior of short and long polymers by means of coarse-grained computer simulations of a by-polyvinyl alcohol inspired model. In particular, we focus on the structural changes in the monomer and polymer scales during cooling and the application of uni-axial true strain. The straining of long polymers results in the formation of a semi-crystalline system at temperatures well above the crystallization temperature, which allows for the study of strain induced crystallization.

7.
Soft Matter ; 16(6): 1538-1547, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31939976

RESUMO

We report mesoscopic simulations of the interaction between a silica nanoparticle and cis-1,4-polybutadiene chains with realistic coarse-(CG) grained models. The CG models are obtained with a bottom-up Bayesian method based on trajectory matching of atomistic configurations of the system. We then investigate the structural properties of the interfacial region as a function of the grafting density and polymer chain length. We take advantage of the realistic CG models to explore the dynamics of the nanoparticle over a period of 10 microseconds. We show that the dynamics of the nanoparticle is affected by the grafting density and the polymer chain length of the grafted chains.

8.
J Chem Phys ; 153(21): 214901, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33291912

RESUMO

Despite the fact that anisotropic particles have been introduced to describe molecular interactions for decades, they have been poorly used for polymers because of their computing time overhead and the absence of a relevant proof of their impact in this field. We first report a method using anisotropic beads for polymers, which solves the computing time issue by considering that beads keep their principal orientation alongside the mean local backbone vector of the polymer chain, avoiding the computation of torques during the dynamics. Applying this method to a polymer bulk, we study the effect of anisotropic interactions vs isotropic ones for various properties such as density, pressure, topology of the chain network, local structure, and orientational order. We show that for different classes of potentials traditionally used in molecular simulations, those backbone oriented anisotropic beads can solve numerous issues usually encountered with isotropic interactions. We conclude that the use of backbone oriented anisotropic beads is a promising approach for the development of realistic coarse-grained potentials for polymers.

9.
J Comput Chem ; 38(9): 629-638, 2017 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-28211110

RESUMO

The force field conversion from one MD program to another one is exhausting and error-prone. Although single conversion tools from one MD program to another exist not every combination and both directions of conversion are available for the favorite MD programs Amber, Charmm, Dl-Poly, Gromacs, and Lammps. We present here a general tool for the force field conversion on the basis of an XML document. The force field is converted to and from this XML structure facilitating the implementation of new MD programs for the conversion. Furthermore, the XML structure is human readable and can be manipulated before continuing the conversion. We report, as testcases, the conversions of topologies for acetonitrile, dimethylformamide, and 1-ethyl-3-methylimidazolium trifluoromethanesulfonate comprising also Urey-Bradley and Ryckaert-Bellemans potentials. © 2017 Wiley Periodicals, Inc.

10.
Soft Matter ; 12(36): 7529-7538, 2016 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-27714286

RESUMO

We propose a general method to calculate the drift velocity of cholesteric textures subjected to a temperature gradient when the backflow effects are negligible. The textures may be Translationally Invariant Configurations (TICs) or localized structures such as cholesteric droplets or cholesteric fingers. For the TICs and for the droplets, the drift is rotational while for the fingers, the drift is translational. We show that for the TICs, the drift is only due to the thermomechanical coupling terms of Leslie (classical term) and of Akopyan and Zel'dovich (which are additional texture-dependent terms). For the localized structures, we show that another mechanism involving the temperature variations of the elastic constants and the existence of a transverse temperature gradient can lead to a drift which adds to the one due the classical thermomechanical effects.

11.
J Chem Inf Model ; 56(1): 260-8, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26646769

RESUMO

LAMMPS is a very customizable molecular dynamics simulation software, which can be used to simulate a large diversity of systems. We introduce a new package for simulation of polarizable systems with LAMMPS using thermalized Drude oscillators. The implemented functionalities are described and are illustrated by examples. The implementation was validated by comparing simulation results with published data and using a reference software. Computational performance is also analyzed.


Assuntos
Simulação de Dinâmica Molecular , Temperatura , Armazenamento e Recuperação da Informação , Conformação Molecular , Pressão
12.
J Chem Phys ; 145(5): 054107, 2016 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-27497539

RESUMO

A new Bayesian method was recently introduced for developing coarse-grain (CG) force fields for molecular dynamics. The CG models designed for dissipative particle dynamics (DPD) are optimized based on trajectory matching. Here we extend this method to improve transferability across thermodynamic conditions. We demonstrate the capability of the method by developing a CG model of n-pentane from constant-NPT atomistic simulations of bulk liquid phases and we apply the CG-DPD model to the calculation of the surface tension of the liquid-vapor interface over a large range of temperatures. The coexisting densities, vapor pressures, and surface tensions calculated with different CG and atomistic models are compared to experiments. Depending on the database used for the development of the potentials, it is possible to build a CG model which performs very well in the reproduction of the surface tension on the orthobaric curve.

13.
J Chem Phys ; 143(8): 084122, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26328833

RESUMO

We introduce a new bottom-up method for the optimization of dissipative coarse-grain models. The method is based on Bayesian optimization of the likelihood to reproduce a coarse-grained reference trajectory obtained from analysis of a higher resolution molecular dynamics trajectory. This new method is related to force matching techniques, but using the total force on each grain averaged on a coarse time step instead of instantaneous forces. It has the advantage of not being limited to pairwise short-range interactions in the coarse-grain model and also yields an estimation of the friction parameter controlling the dynamics. The theory supporting the method is exposed in a practical perspective, with an analytical solution for the optimal set of parameters. The method was first validated by using it on a system with a known optimum. The new method was then tested on a simple system: n-pentane. The local molecular structure of the optimized model is in excellent agreement with the reference system. An extension of the method allows to get also an excellent agreement for the equilibrium density. As for the dynamic properties, they are also very satisfactory, but more sensitive to the choice of the coarse-grain representation. The quality of the final force field depends on the definition of the coarse grain degrees of freedom and interactions. We consider this method as a serious alternative to other methods like iterative Boltzmann inversion, force matching, and Green-Kubo formulae.

14.
J Phys Chem B ; 127(23): 5360-5370, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37279165

RESUMO

We apply in this study different methodologies based on thermodynamic integration (TI), free energy perturbation (FEP), and potential of mean force (PMF) to address the challenging issue of the calculation of the free energy of adsorption. A model system composed of a solid substrate, an adsorbate, and solvent particles is specifically designed to reduce the dependence of our free energy results on the sampling of the phase space and the choice of the pathway. The reliability and efficiency of these alchemical free energy simulations are established through the closure of a thermodynamic cycle describing the adsorption process in solution and in a vacuum. We complete this study by the calculation of free energy contributions related to phenomena of desorption of solvent molecules and desolvation of the adsorbate upon adsorption. This calculation relies on the work of adhesion, the interfacial tension of the liquid-vapor of the solvent, and the free energy of solvation of the substrate. The different ways of calculating the free energy of adsorption are in excellent agreement and could complete experiments in the field of adsorption by giving quantitative data on the different energy contributions involved in the process.

15.
J Phys Chem B ; 127(11): 2617-2628, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36917513

RESUMO

The molecular simulation of interfacial systems is a matter of debate because of the choice of many input parameters that can affect significantly the performance of the force field of reproducing the surface tension and the coexisting densities. After developing a robust methodology for the calculation of the surface tension on a Lennard-Jones fluid, we apply it with different force fields to calculate the density and surface tension of pure constituents of epoxy resins. By using the model that best reproduces the experimental density and surface tension, we investigate the impact of composition in mass fraction on uncured epoxy resins and the effects of degree of cross-linking on cured resins.

16.
J Phys Chem B ; 127(15): 3543-3555, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37018548

RESUMO

We report molecular simulations of the interaction between poly(ethylene terephthalate) (PET) surfaces and water molecules with a short-term goal to better evaluate the different energy contributions governing the enzymatic degradation of amorphous PET. After checking that the glass transition temperature, density, entanglement mass, and mechanical properties of an amorphous PET are well reproduced by our molecular model, we extend the study to the extraction of a monomer from the bulk surface in different environments, i.e., water, vacuum, dodecane, and ethylene glycol. We complete this energetic characterization by the calculation of the work of adhesion of PET surfaces with water and dodecane molecules and by the determination of the contact angle of water droplets. These calculations are compared with experiments and should help us to better understand the enzymatic degradation of PET from both the thermodynamic and molecular viewpoints.

17.
Phys Rev E ; 105(2-1): 024707, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35291088

RESUMO

We show experimentally and theoretically that the heliconical fluctuations that develop in a cholesteric phase (Ch) close to a transition to a chiral twist-bend nematic phase (N_{TB}) may lead to the appearance of a compensation point. At this point, the equilibrium twist of the cholesteric phase vanishes and changes sign. Mixtures of the flexible dimer CB7CB and the rodlike molecules 8CB or 5CB, doped with a small amount of the chiral molecules R811, S2011, CC, or CB15, are used in experiments to determine the conditions for the appearance of a compensation point.

18.
ACS Appl Bio Mater ; 5(6): 2567-2575, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35549028

RESUMO

We investigate the adsorption of insulin onto PE and PVC materials by using HPLC measurements and computer simulations. We interpret the experiments by calculating the Gibbs free energy profiles during the adsorption process. The values of free energy of adsorption show a good agreement with the experimental measurements. The adsorption of insulin onto the different materials is characterized through the conformational changes with respect to its conformation in water and the interfacial regions, which are described by specific arrangements of polymer chains, water, insulin, and plasticizer molecules.


Assuntos
Insulina , Cloreto de Polivinila , Adsorção , Insulina Regular Humana , Plastificantes , Água
19.
ACS Omega ; 7(29): 25013-25021, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35910107

RESUMO

Cucurbiturils are well known for their ability to form supramolecular systems with ultrahigh affinities binding. Inclusion complex between 4-aminoazobenzene and cucurbit[7]uril has been investigated in aqueous solution by ultraviolet (UV)-spectroscopy, 1H NMR, and molecular simulations. 4-aminoazobenzene shows high affinity in acidic solutions while no association was detected in neutral solutions. The thermodynamic properties of complex formation are investigated using both UV spectroscopy and nuclear magnetic resonance (NMR) measurements. Our results highlight that the high binding constant between CB7 and 4AA (log K = 4.9) is the result of a large negative change in Δr H° (-19 kJ/mol) and a small positive change in TΔr S° (9 kJ/mol). The analysis of the experimental data lead to hypothesis on the structure of the complex. We have used molecular dynamics simulation to interpret experiments. Interestingly, the cis-trans isomerization of aminoazobenzene is considered. All the results are discussed and compared with those previously obtained with other host molecules.

20.
ACS Omega ; 7(34): 30040-30050, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36061676

RESUMO

All-atom molecular dynamics (MD) simulations were performed with the CHARMM force field to characterize various epoxy resins, such as aliphatic and bisphenol-based resins. A multistep cross-linking algorithm was established, and key properties such as density, glass temperature, and elastic modulus were calculated. A quantitative comparison was made and was proven to be in good agreement with experimental data, with average absolute deviations between experiments and molecular simulation comprised between 2% and 12%. Additional findings on structure-property relationships were highlighted such as the effect of the cross-linking rate and oligomerization of the resin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA