RESUMO
The distribution of Potato virus Y (PVY) in the systemically infected potato (Solanum tuberosum) plants of the highly susceptible cultivar Igor was investigated. Virus presence and accumulation was analyzed in different plant organs and tissues using real-time polymerase chain reaction and transmission electron microscopy (TEM) negative staining methods. To get a complete insight into the location of viral RNA within the tissue, in situ hybridization was developed and optimized for the detection of PVY RNA at the cellular level. PVY was shown to accumulate in all studied leaf and stem tissues, in shoot tips, roots, and tubers; however, the level of virus accumulation was specific for each organ or tissue. The highest amounts of viral RNA and viral particles were found in symptomatic leaves and stem. By observing cell ultrastructure with TEM, viral cytoplasmic inclusion bodies were localized in close vicinity to the epidermis and in trichomes. Our results show that viral RNA, viral particles, and cytoplasmic inclusion bodies colocalize within the same type of cells or in close vicinity.
Assuntos
Doenças das Plantas/virologia , Potyvirus/metabolismo , Solanum tuberosum/virologia , Transporte Biológico , Hibridização In Situ , Microscopia Eletrônica de Transmissão , Especificidade de Órgãos , Epiderme Vegetal/ultraestrutura , Epiderme Vegetal/virologia , Folhas de Planta/ultraestrutura , Folhas de Planta/virologia , Raízes de Plantas/ultraestrutura , Raízes de Plantas/virologia , Caules de Planta/ultraestrutura , Caules de Planta/virologia , Potyvirus/genética , Potyvirus/ultraestrutura , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Solanum tuberosum/ultraestrutura , Vírion/genética , Vírion/metabolismo , Vírion/ultraestruturaRESUMO
In eukaryotes, nuclear genome sizes vary by more than five orders of magnitude. This variation is not related to organismal complexity, and its origin and biological significance are still disputed. One of the open questions is whether genome size has an adaptive role. We tested the hypothesis that genome size has selective significance, using five grassland communities occurring on a gradient of metal pollution of the soil as a model. We detected a negative correlation between the concentration of contaminating metals in the soil and the number of vascular plant species. Analysis of genome sizes of 70 herbaceous dicot perennial species occurring on the investigated plots revealed a negative correlation between the concentration of contaminating metals in the soil and the proportion of species with large genomes in plant communities. Consistent with the hypothesis, these results show that species with large genomes are at selective disadvantage in extreme environmental conditions.
Assuntos
Genoma de Planta , Magnoliopsida/genética , Metais Pesados/análise , Seleção Genética , Poluentes do Solo/análiseRESUMO
The abscission of tomato leaves occurs in the petiole abscission zone, and its late stage includes two spatially divided processes: cell separation and programmed cell death (PCD). Both of these processes are regulated by ethylene. The last step in ethylene biosynthesis is conversion of 1-aminocyclopropane-1-carboxylic acid to ethylene, which is catalysed by the enzyme 1-aminocyclopropane-1-carboxylate oxidase (ACO); however, the location of ACO in the leaf petiole abscission zone is not known. The tomato gene LeLX encodes ribonuclease LX, which is a marker for PCD and is induced by ethylene during abscission, but its association with ACO has not been explored. In a tomato transgenic line 1-7 with inhibited expression of LeLX showing delayed leaf abscission, the morphology and ultrastructure of the leaf petiole abscission zone was examined. In this zone of the cv.'VF36' and of a transgenic line 1-7, spatiotemporal differences in expression of LeACO1 and LeACO4 were analysed and ACO protein was detected immunohistochemically. In comparison to wild-type plants, there were no obvious morphological and ultrastructural features in the abscission zone of plants of a transgenic line 1-7 before and after abscission induction. LeACO1 expression was low before abscission induction, and increased 24 h after induction, although with no apparent spatial pattern. In contrast, LeACO4 was expressed before abscission induction, and its transcript level declined 24 h after induction on the distal side of the abscission zone fracture. In the LeLX-inhibited transgenic line, there were no significant differences in LeACO1 and LeACO4 expression in the petiole abscission zone, in comparison to wild-type plants. In addition, the ACO protein was immunolocalised to the vascular tissues that traverse the petiole abscission zone in plants of wild type and of a transgenic line 1-7; and additionally in the plane of future abscission zone fracture of transgenic-line plants. The results suggest temporal differential expression of the LeACO genes in tomato leaf petioles and vascular localisation of ACO1 protein. Additionally, the results indicate that expression of LeACO genes is not affected by suppression of the LeLX expression.
Assuntos
Aminoácido Oxirredutases/genética , Endorribonucleases/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Aminoácido Oxirredutases/metabolismo , Endorribonucleases/metabolismo , Etilenos/farmacologia , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/metabolismo , Folhas de Planta/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Poligalacturonase/imunologia , Poligalacturonase/metabolismoRESUMO
In Europe the most devastating phytoplasma associated with grapevine yellows (GY) diseases is a quarantine pest, flavescence dorée (FDp), from the 16SrV taxonomic group. The on-site detection of FDp with an affordable device would contribute to faster and more efficient decisions on the control measures for FDp. Therefore, a real-time isothermal LAMP assay for detection of FDp was validated according to the EPPO standards and MIQE guidelines. The LAMP assay was shown to be specific and extremely sensitive, because it detected FDp in all leaf samples that were determined to be FDp infected using quantitative real-time PCR. The whole procedure of sample preparation and testing was designed and optimized for on-site detection and can be completed in one hour. The homogenization procedure of the grapevine samples (leaf vein, flower or berry) was optimized to allow direct testing of crude homogenates with the LAMP assay, without the need for DNA extraction, and was shown to be extremely sensitive.
RESUMO
A DNA mediated transformation system has been developed for the filamentous fungus Cochliobolus lunatus. Transformants were obtained by using plasmid pAN 7-1 carrying the Escherichia coli hygromycin B phosphotransferase gene (hph) fused to an Aspergillus nidulans promoter. The integration of plasmid pAN 7-1 into the fungal genome altered the ability of this microorganism to transform progesterone.
Assuntos
Ascomicetos/genética , Escherichia coli/genética , Transformação Genética , Ascomicetos/efeitos dos fármacos , Ascomicetos/fisiologia , Biotransformação , DNA Fúngico/genética , DNA Fúngico/isolamento & purificação , Higromicina B/farmacologia , Hibridização de Ácido Nucleico , Plasmídeos , Progesterona/metabolismo , Protoplastos/efeitos dos fármacos , Protoplastos/fisiologia , Mapeamento por RestriçãoRESUMO
Nitric oxide reductase was purified from Paracoccus denitrificans very nearly to homogeneity by a simple method that involved the use of octyl glucoside to solubilize the enzyme from membranes and required a single hydroxyapatite column. The enzyme had specific activities of about 10 mumol NO reduced x min-1 x mg-1 at pH 6.5 in an amperometric assay system using phenazine methosulfate/ascorbate as the reducing agent and about 22 mumol NO reduced x min-1 x mg-1 at pH 5.0, which is the optimum pH. These values are based on average rates over kinetically complex progress curves and would be about three times greater if based on maximum rate values. The enzyme appeared to be reversibly inhibited by NOaq and to have a Km too low (probably less than or equal to 1 microM) to measure reliably by the amperometric method. The effective second-order rate constant of the enzyme lay within 1 to 2 orders of magnitude of the diffusion controlled limit. The enzyme was composed of a tight complex of two cytochromes: a cytochrome c (Mr = 17,500) and a cytochrome b (Mr = 38,000). The mole ratios of cytochrome c to cytochrome b and Mr 17,500 peptide to Mr 38,000 peptide were both about 1.7, and the heme content was about 3 mol/73,000 g (38,000 + 2(17,500)). Each subunit therefore contained only one heme group. The Mr 38,000 peptide aggregated when heated in the sample buffer used for sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In addition to the ascorbate-based activity, the enzyme showed a little NADH-NO oxidoreductase activity which was not inhibited by antimycin A. The enzyme lost activity with a half-life of about 2 days at 4 degrees C but could be preserved at -20 degrees C and in liquid nitrogen. It seemed not to be inactivated by aerobic solutions. These observations, and the recent ones by Carr and Ferguson (Carr, G.J., and Ferguson, S.J. (1990) Biochem. J. 269, 423-429) with a partially purified preparation of nitric oxide reductase, establish that the enzyme from Pa. denitrificans is a cytochrome bc complex which resembles that from Pseudomonas stutzeri (Heiss, B., Frunzke, K., and Zumft, W.G. (1989) J. Bacteriol. 171, 3288-3297). There would appear to be no functional relationship between nitric oxide reductase and a Mr = 34,000 peptide of Pa. denitrificans membranes reported previously to be present in purified preparations of a nitric oxide reductase (Hoglen, J., and Hollocher, T.C. (1989) J. Biol. Chem. 264, 7556-7563).