Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Small ; : e2402245, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747006

RESUMO

This study explores trivalent Al interaction with aqueous starch gel in the presence of two different anions through salting effect. Salting-out nature of Al2(SO4)3·18H2O with starch gel causes precipitation of starch; this happens due to competitive anion-water complex formation over starch-water interaction, thereby reducing polymer solubility. Salting-in effect of AlCl3 with starch gel happens through Al3+ cation interaction with hydroxyl group of starch and increases polymer solubility, making gel electrolyte viable for battery applications. Prepared gel electrolyte exhibits ionic conductivity of 1.59 mS cm-1 and a high tAl 3+ value of 0.77. The gel electrolyte's performance is studied using two different cathodes, the Al|MoO3 cell employing starch gel electrolyte achieves discharge capacity of 193 mA h g-1 and Al|MnO2 cell achieves discharge capacity of 140 mA h g-1 @0.1 A g-1 for first cycle. The diffusion coefficient of both cells using starch gel electrolyte is calculated and found to be 2.1 × 10-11 cm2 s-1 for Al|MoO3 and 3.1 × 10-11 cm2 s-1 for Al|MnO2 cells. The Al|MoO3 cell at lower temperature shows improved electrochemical performance with a specific capacity retention of ≈87.8% over 90 cycles. This kind of aqueous gel electrolyte operating at low temperature broadens the application for next generation sustainable batteries.

2.
PLoS Biol ; 19(11): e3001423, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34735435

RESUMO

Herpesviruses cause severe diseases particularly in immunocompromised patients. Both genome packaging and release from the capsid require a unique portal channel occupying one of the 12 capsid vertices. Here, we report the 2.6 Å crystal structure of the pentameric pORF19 of the γ-herpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV) resembling the portal cap that seals this portal channel. We also present the structure of its ß-herpesviral ortholog, revealing a striking structural similarity to its α- and γ-herpesviral counterparts despite apparent differences in capsid association. We demonstrate pORF19 pentamer formation in solution and provide insights into how pentamerization is triggered in infected cells. Mutagenesis in its lateral interfaces blocked pORF19 pentamerization and severely affected KSHV capsid assembly and production of infectious progeny. Our results pave the way to better understand the role of pORF19 in capsid assembly and identify a potential novel drug target for the treatment of herpesvirus-induced diseases.


Assuntos
Herpesvirus Humano 8/fisiologia , Fases de Leitura Aberta/genética , Multimerização Proteica , Proteínas Virais/metabolismo , Montagem de Vírus/fisiologia , Animais , Capsídeo/química , Sequência Conservada , Cristalografia por Raios X , Empacotamento do DNA , DNA Viral/genética , Drosophila , Células HEK293 , Herpesvirus Humano 8/ultraestrutura , Humanos , Modelos Moleculares , Mutagênese/genética , Proteínas Mutantes/metabolismo , Proteínas Virais/química
3.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34508005

RESUMO

Macromolecules such as monoclonal antibodies (mAbs) are likely to experience poor tumor penetration because of their large size, and thus low drug exposure of target cells within a tumor could contribute to suboptimal responses. Given the challenge of inadequate quantitative tools to assess mAb activity within tumors, we hypothesized that measurement of accessible target levels in tumors could elucidate the pharmacologic activity of a mAb and could be used to compare the activity of different mAbs. Using positron emission tomography (PET), we measured the pharmacodynamics of immune checkpoint protein programmed-death ligand 1 (PD-L1) to evaluate pharmacologic effects of mAbs targeting PD-L1 and its receptor programmed cell death protein 1 (PD-1). For PD-L1 quantification, we first developed a small peptide-based fluorine-18-labeled PET imaging agent, [18F]DK222, which provided high-contrast images in preclinical models. We then quantified accessible PD-L1 levels in the tumor bed during treatment with anti-PD-1 and anti-PD-L1 mAbs. Applying mixed-effects models to these data, we found subtle differences in the pharmacodynamic effects of two anti-PD-1 mAbs (nivolumab and pembrolizumab). In contrast, we observed starkly divergent target engagement with anti-PD-L1 mAbs (atezolizumab, avelumab, and durvalumab) that were administered at equivalent doses, correlating with differential effects on tumor growth. Thus, we show that measuring PD-L1 pharmacodynamics informs mechanistic understanding of therapeutic mAbs targeting PD-L1 and PD-1. These findings demonstrate the value of quantifying target pharmacodynamics to elucidate the pharmacologic activity of mAbs, independent of mAb biophysical properties and inclusive of all physiological variables, which are highly heterogeneous within and across tumors and patients.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Antígeno B7-H1/antagonistas & inibidores , Neoplasias da Mama/tratamento farmacológico , Radioisótopos de Flúor/farmacocinética , Fragmentos de Peptídeos/farmacocinética , Tomografia por Emissão de Pósitrons/métodos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Animais , Apoptose , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Compostos Radiofarmacêuticos/farmacocinética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
4.
J Virol ; 93(20)2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31341058

RESUMO

Several therapeutic strategies targeting Epstein-Barr virus (EBV)-associated tumors involve upregulation of viral lytic gene expression. Evidence has been presented that the unfolded protein response (UPR) leads to EBV lytic gene expression. Clofoctol, an antibacterial antibiotic, has been reported to upregulate the UPR in prostate cancer cell lines and to slow their growth. We investigated the effects of clofoctol on an EBV-positive Burkitt lymphoma cell line and confirmed the upregulation of all three branches of the UPR and activation of EBV lytic gene expression. While immediate early, early, and late EBV RNAs were all upregulated, immediate early and early viral proteins but not late viral proteins were expressed. Furthermore, infectious virions were not produced. The use of clofoctol in combination with a protein kinase R-like endoplasmic reticulum kinase inhibitor led to expression of late viral proteins. The effects of clofoctol on EBV lytic protein upregulation were not limited to lymphoid tumor cell lines but also occurred in naturally infected epithelial gastric cancer and nasopharyngeal cancer cell lines. An agent that upregulates lytic viral protein expression but that does not lead to the production of infectious virions may have particular value for lytic induction strategies in the clinical setting.IMPORTANCE Epstein-Barr virus is associated with many different cancers. In these cancers the viral genome is predominantly latent; i.e., most viral genes are not expressed, most viral proteins are not synthesized, and new virions are not produced. Some strategies for treating these cancers involve activation of lytic viral gene expression. We identify an antibacterial antibiotic, clofoctol, that is an activator of EBV lytic RNA and protein expression but that does not lead to virion production.


Assuntos
Infecções por Vírus Epstein-Barr/virologia , Regulação Viral da Expressão Gênica , Herpesvirus Humano 4/efeitos dos fármacos , Herpesvirus Humano 4/fisiologia , Interações Hospedeiro-Patógeno , Ativação Viral/efeitos dos fármacos , Replicação Viral , Biomarcadores , Linhagem Celular Tumoral , Infecções por Vírus Epstein-Barr/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Complexo de Endopeptidases do Proteassoma/metabolismo , Estresse Fisiológico , Resposta a Proteínas não Dobradas , Proteínas Virais/genética , Proteínas Virais/metabolismo , eIF-2 Quinase/antagonistas & inibidores
5.
Mol Pharm ; 17(9): 3600-3608, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32794756

RESUMO

Among the FDA-approved small molecule drugs (2005-2016) that are primarily metabolized by cytochrome P450 (CYP), 64% are primarily metabolized by CYP3A4. As the proportion of an individual drug's fraction metabolized through CYP3A4 increases, the risk for the drug to be a victim of an interaction with CYP3A4 inhibitors or inducers increases. Therefore, it is important to assess the extent of involvement of individual CYP enzymes in the overall clearance for a scaffold early in discovery and mitigate the CYP3A4-mediated victim-drug-drug interaction (DDI) risk, if warranted by the desired clinical profile of the drug. To mitigate the CYP3A4-mediated victim DDI risk in discovery, we analyzed the physicochemical properties of the CYP3A4 substrates and found that molecular weight was the property that provided the best separation of the CYP3A4 substrates from other CYP substrates. In addition, neutral and basic compounds with MW ≥ 360 g/mol tend to be primarily metabolized by CYP3A4, whereas acidic compounds with MW < 360 g/mol are most likely to be primarily metabolized by other CYP enzymes. We then developed Support Vector Machine based on fingerprints (SVM-FP) and Deep-Learning (DL) models to predict if a molecule will be primarily metabolized by CYP3A4. Our models were trained on 2306 compounds, which is the largest training set among published models for this endpoint. Both models showed positive predictive values (PPV) > 80% in predicting a CYP3A4 substrate on a prospective testing set. Given the high PPV of the models, project teams can confidently deprioritize compounds predicted to be CYP3A4 substrates to avoid the potential liability of CYP3A4 victim DDI. Teams can then focus time and resources on synthesizing compounds that are predicted to have a lower dependency on CYP3A4 metabolism and confirm that experimentally. Through such iterative in silico-in vitro learning circles, drug discovery teams can decide if metabolism through non-CYP3A4 pathways could be achieved in the SAR of a chemical series to mitigate the CYP3A4 victim DDI risk.


Assuntos
Citocromo P-450 CYP3A/metabolismo , Interações Medicamentosas/fisiologia , Inibidores do Citocromo P-450 CYP3A/metabolismo , Descoberta de Drogas/métodos , Humanos , Aprendizado de Máquina , Microssomos Hepáticos/metabolismo , Estudos Prospectivos
6.
J Chem Inf Model ; 60(10): 4757-4771, 2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-32975944

RESUMO

Matched Molecular Pairs (MMP) analysis is a well-established technique for Structure Activity and Property Analysis (SAR and SPR). Summarizing multiple MMPs that describe the same structural change into a single chemical transform can be a powerful tool for prediction (termed Transform from here on). This is particularly useful in the area of Absorption, Distribution, Metabolism, and Elimination (ADME) analysis that is less influenced by 3D structural binding effects. The creation of a knowledge database containing many of these Transforms across typical ADME assays promises to be a powerful approach to aid multidimensional optimization. We present a detailed workflow for the derivation of such a database. We include details of an MMP fragmentation algorithm with associated statistical summarization methods for the derivation of Transforms. This is made freely available as part of the LillyMol software package. We describe the application of this method to several ADME/Tox (Toxicity) assay data sets and highlight multiple cases where the impact of traditional medicinal chemistry Transforms is contradicted by MMP data. We also describe the internal software interface used by medicinal chemists to aid the design of new compounds via automated suggestion. This approach utilizes the matched pairs database to "suggest" improved compounds in an automated design scenario. A nonvisual script-based version of the automated suggestions code with an associated set of described chemical Transforms is also made freely available along with this paper and as part of the LillyMol software package. Finally, we contrast this knowledge database against a larger database of all MMPs derived from a 2 million compound diversity set and a subset of MMPs seen in historical discovery projects. The comparison against all transforms in the diversity collection highlights the very low coverage of the transform database as compared to all possible transforms involving 15 atom fragments. The comparison against a smaller subset of Transforms seen on internal Medicinal Chemistry projects shows better coverage of the transform database for a small set of common medicinal chemistry strategies. Within the context of all possible transforms available to a medicinal chemistry project team, the challenge remains to move beyond mere idea generation from past projects toward high quality prediction for novel ADME/Tox modulating Transforms.


Assuntos
Algoritmos , Software , Química Farmacêutica , Bases de Dados Factuais , Bases de Conhecimento
7.
Proc Natl Acad Sci U S A ; 114(42): E8885-E8894, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-28928148

RESUMO

Here, we present a transformational approach to genome engineering of herpes simplex virus type 1 (HSV-1), which has a large DNA genome, using synthetic genomics tools. We believe this method will enable more rapid and complex modifications of HSV-1 and other large DNA viruses than previous technologies, facilitating many useful applications. Yeast transformation-associated recombination was used to clone 11 fragments comprising the HSV-1 strain KOS 152 kb genome. Using overlapping sequences between the adjacent pieces, we assembled the fragments into a complete virus genome in yeast, transferred it into an Escherichia coli host, and reconstituted infectious virus following transfection into mammalian cells. The virus derived from this yeast-assembled genome, KOSYA, replicated with kinetics similar to wild-type virus. We demonstrated the utility of this modular assembly technology by making numerous modifications to a single gene, making changes to two genes at the same time and, finally, generating individual and combinatorial deletions to a set of five conserved genes that encode virion structural proteins. While the ability to perform genome-wide editing through assembly methods in large DNA virus genomes raises dual-use concerns, we believe the incremental risks are outweighed by potential benefits. These include enhanced functional studies, generation of oncolytic virus vectors, development of delivery platforms of genes for vaccines or therapy, as well as more rapid development of countermeasures against potential biothreats.


Assuntos
Genômica/métodos , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/patogenicidade , Animais , Proteínas de Bactérias/genética , Chlorocebus aethiops , Cromossomos Artificiais Bacterianos , Escherichia coli/genética , Genoma Viral , Proteínas Luminescentes/genética , Proteínas Recombinantes de Fusão/genética , Recombinação Genética , Saccharomyces cerevisiae/genética , Células Vero , Montagem de Vírus/genética
8.
Mol Pharm ; 16(9): 4077-4085, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31348668

RESUMO

The fraction unbound in the incubation, fu,inc, is an important parameter to consider in the evaluation of intrinsic clearance measurements performed in vitro in hepatocytes or microsomes. Reliable estimates of fu,inc based on a compound's structure have the potential to positively impact the screening timelines in drug discovery. Previous works suggested that fu,inc is primarily driven by passive processes and can be described using physicochemical properties such as lipophilicity and the protonation state of the molecule. While models based on these principles proved predictive in relatively small datasets that included marketed drugs, their applicability domain has not been extensively explored. The work presented here from the in silico ADME discussion group (part of the International Consortium for Innovation through Quality in Pharmaceutical Development, the IQ consortium) describes the accuracy of these models in large proprietary datasets that include several thousand of compounds across chemical space. Overall, the models do well for compounds with low lipophilicity. In other words, the equations correctly predict that fu,inc is, in general, above 0.5 for compounds with a calculated logP of less than 3. When applied to lipophilic compounds, the models failed to produce quantitatively accurate predictions of fu,inc, with a high risk of underestimating binding properties. These models can, therefore, be used quantitatively for less lipophilic compounds. On the other hand, internal machine-learning models using a company's own proprietary dataset also predict compounds with higher lipophilicity reasonably well. Additionally, the data shown indicate that microsomal binding is, in general, a good proxy for hepatocyte binding.


Assuntos
Química Computacional/métodos , Hepatócitos/metabolismo , Microssomos Hepáticos/metabolismo , Modelos Biológicos , Preparações Farmacêuticas/metabolismo , Animais , Simulação por Computador , Bases de Dados Factuais , Descoberta de Drogas , Humanos , Cinética , Aprendizado de Máquina , Taxa de Depuração Metabólica , Ligação Proteica , Ratos
9.
J Chem Inf Model ; 59(3): 1005-1016, 2019 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-30586300

RESUMO

Deep learning has drawn significant attention in different areas including drug discovery. It has been proposed that it could outperform other machine learning algorithms, especially with big data sets. In the field of pharmaceutical industry, machine learning models are built to understand quantitative structure-activity relationships (QSARs) and predict molecular activities, including absorption, distribution, metabolism, and excretion (ADME) properties, using only molecular structures. Previous reports have demonstrated the advantages of using deep neural networks (DNNs) for QSAR modeling. One of the challenges while building DNN models is identifying the hyperparameters that lead to better generalization of the models. In this study, we investigated several tunable hyperparameters of deep neural network models on 24 industrial ADME data sets. We analyzed the sensitivity and influence of five different hyperparameters including the learning rate, weight decay for L2 regularization, dropout rate, activation function, and the use of batch normalization. This paper focuses on strategies and practices for DNN model building. Further, the optimized model for each data set was built and compared with the benchmark models used in production. Based on our benchmarking results, we propose several practices for building DNN QSAR models.


Assuntos
Aprendizado Profundo , Descoberta de Drogas/métodos , Absorção Fisico-Química , Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo , Relação Quantitativa Estrutura-Atividade
10.
Nucleic Acids Res ; 45(7): e50, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-27980064

RESUMO

The delivery of large DNA vectors (>100 000 bp) remains a limiting step in the engineering of mammalian cells and the development of human artificial chromosomes (HACs). Yeast is commonly used to assemble genetic constructs in the megabase size range, and has previously been used to transfer constructs directly into cultured cells. We improved this method to efficiently deliver large (1.1 Mb) synthetic yeast centromeric plasmids (YCps) to cultured cell lines at rates similar to that of 12 kb YCps. Synchronizing cells in mitosis improved the delivery efficiency by 10-fold and a statistical design of experiments approach was employed to boost the vector delivery rate by nearly 300-fold from 1/250 000 to 1/840 cells, and subsequently optimize the delivery process for multiple mammalian, avian, and insect cell lines. We adapted this method to rapidly deliver a 152 kb herpes simplex virus 1 genome cloned in yeast into mammalian cells to produce infectious virus.


Assuntos
Técnicas de Transferência de Genes , Vetores Genéticos , Saccharomyces cerevisiae/genética , Animais , Chlorocebus aethiops , Cromossomos , Cricetinae , Genoma Viral , Células HEK293 , Células HeLa , Herpesvirus Humano 1/genética , Humanos , Mitose/genética , Plasmídeos/genética , Células Vero
11.
J Am Chem Soc ; 140(36): 11495-11501, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30114365

RESUMO

Membrane proteins play vital roles in cellular signaling processes and serve as the most popular drug targets. A key task in studying cellular functions and developing drugs is to measure the binding kinetics of ligands with the membrane proteins. However, this has been a long-standing challenge because one must perform the measurement in a membrane environment to maintain the conformations and functions of the membrane proteins. Here, we report a new method to measure ligand binding kinetics to membrane proteins using self-assembled virion oscillators. Virions of human herpesvirus were used to display human G-protein-coupled receptors (GPCRs) on their viral envelopes. Each virion was then attached to a gold-coated glass surface via a flexible polymer to form an oscillator and driven into oscillation with an alternating electric field. By tracking changes in the oscillation amplitude in real-time with subnanometer precision, the binding kinetics between ligands and GPCRs was measured. We anticipate that this new label-free detection technology can be readily applied to measure small or large ligand binding to any type of membrane proteins and thus contribute to the understanding of cellular functions and screening of drugs.


Assuntos
Nanopartículas/química , Receptores Acoplados a Proteínas G/química , Vírion/química , Sítios de Ligação , Humanos , Cinética , Ligantes , Estrutura Molecular , Ligação Proteica
12.
Anal Chem ; 90(18): 10958-10966, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30106562

RESUMO

Bacterial meningitis in neonates and infants is an acute lethal disease and occurs in response to microbial exploitation of the blood-brain barrier (BBB), resulting in the intracranial inflammation. Several pathogens, such as Escherichia coli ( E. coli), can cause this devastating disease; however, the underlying molecular mechanisms by which these pathogens exploit the BBB remain incompletely understood. To identify important players on both the pathogen and host sides that govern the E. coli-BBB cell interactions, we took advantage of the E. coli and human proteome microarrays (i.e., HuProt) as an unbiased, proteome-wide tool for identification of important players on both sides. Using the E. coli proteome microarrays, we developed a unique high throughput chip-based cell probing assay to probe with fluorescent live human brain microvascular endothelial cells (HBMEC, which constitute the BBB). We identified several transmembrane proteins, which effectively bound to live HBMEC. We focused on YojI protein for further study. By probing the HuProt arrays with YojI, interferon-alpha receptor (IFNAR2) was identified as one of its binding proteins. The importance of YojI and IFNAR2 involved in E. coli-HBMEC interactions was characterized using the YojI knockout bacteria and IFNAR2-knock down HBMEC and further confirmed by E. coli binding assay in HBMEC. This study represents a new paradigm (dual-microarray technology) that enables rapid, unbiased discovery of both pathogen and host players that are involved in pathogen-host interactions for human infectious diseases in a high throughput manner.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Barreira Hematoencefálica/microbiologia , Infecções por Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiologia , Interações Hospedeiro-Patógeno , Proteômica/instrumentação , Receptor de Interferon alfa e beta/metabolismo , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Linhagem Celular , Desenho de Equipamento , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/patologia , Humanos , Dispositivos Lab-On-A-Chip
13.
Mol Pharm ; 15(8): 3060-3068, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-29927611

RESUMO

The organic anion-transporting polypeptide 1B1 transporter belongs to the solute carrier superfamily and is highly expressed at the basolateral membrane of hepatocytes. Several clinical studies show drug-drug interactions involving OATP1B1, thereby prompting the International Transporter Consortium to label OATP1B1 as a critical transporter that can influence a compound's disposition. To examine OATP1B1 inhibition early in the drug discovery process, we established a medium-throughput concentration-dependent OATP1B1 assay. To create an in silico OATP1B1 inhibition model, deliberate in vitro assay enrichment was performed with publically known OATP1B1 inhibitors, noninhibitors, and compounds from our own internal chemistry. To date, approximately 1200 compounds have been tested in the assay with 60:40 distribution between noninhibitors and inhibitors. Bagging, random forest, and support vector machine fingerprint (SVM-FP) quantitative structure-activity relationship classification models were created, and each method showed positive and negative predictive values >90%, sensitivity >80%, specificity >95%, and Matthews correlation coefficient >0.8 on a prospective test set indicating the ability to distinguish inhibitors from noninhibitors. A SVMF-FP regression model was also created that showed an R2 of 0.39, Spearman's rho equal to 0.76, and was capable of predicting 69% of the prospective test set within the experimental variability of the assay (3-fold). In addition to the in silico quantitative structure-activity relationship (QSAR) models, physicochemical trends were examined to provide structure activity relationship guidance to early discovery teams. A JMP partition tree analysis showed that among the compounds with calculated logP >3.5 and ≥1 negatively charged atom, 94% were identified as OATP1B1 inhibitors. The combination of the physicochemical trends along with an in silico QSAR model provides discovery project teams a valuable tool to identify and address drug-drug interaction liability due to OATP1B1 inhibition.


Assuntos
Descoberta de Drogas/métodos , Transportador 1 de Ânion Orgânico Específico do Fígado/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Bioensaio/métodos , Química Farmacêutica , Simulação por Computador , Interações Medicamentosas , Células HEK293 , Humanos , Transportador 1 de Ânion Orgânico Específico do Fígado/química , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Modelos Químicos , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
14.
Bioorg Med Chem Lett ; 28(10): 1758-1764, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29680666

RESUMO

Despite increased research efforts to find new treatments for tuberculosis in recent decades, compounds with novel mechanisms of action are still required. We previously identified a series of novel aryl-oxadiazoles with anti-tubercular activity specific for bacteria using butyrate as a carbon source. We explored the structure activity relationship of this series. Structural modifications were performed in all domains to improve potency and physico-chemical properties. A number of compounds displayed sub-micromolar activity against M. tuberculosis utilizing butyrate, but not glucose as the carbon source. Compounds showed no or low cytotoxicity against eukaryotic cells. Three compounds were profiled in mouse pharmacokinetic studies. Plasma clearance was low to moderate but oral exposure suggested solubility-limited drug absorption in addition to first pass metabolism. The presence of a basic nitrogen in the linker slightly increased solubility, and salt formation optimized aqueous solubility. Our findings suggest that the 1,3,4-oxadiazoles are useful tools and warrant further investigation.


Assuntos
Antibacterianos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Oxidiazóis/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Oxidiazóis/síntese química , Oxidiazóis/química , Relação Estrutura-Atividade
15.
PLoS Genet ; 11(8): e1005447, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26274602

RESUMO

Candida albicans is a common commensal in the human gut but in predisposed patients it can become an important human fungal pathogen. As a commensal, C. albicans adapts to low-oxygen conditions and represses its hyphal development by the transcription factor Efg1, which under normoxia activates filamentation. The repressive hypoxic but not the normoxic function of Efg1 required its unmodified N-terminus, was prevented by phosphomimetic residues at normoxic phosphorylation sites T179 and T206 and occurred only at temperatures ≤35°C. Genome-wide binding sites for native Efg1 identified 300 hypoxia-specific target genes, which overlapped partially with hypoxic binding sites for Ace2, a known positive regulator of hypoxic filamentation. Transcriptional analyses revealed that EFG1, ACE2 and their identified targets BCR1 and BRG1 encode an interconnected regulatory hub, in which Efg1/Bcr1 act as negative and Ace2/Brg1 act as positive regulators of gene expression under hypoxia. In this circuit, the hypoxic function of Ace2 was stimulated by elevated CO2 levels. The hyperfilamentous phenotype of efg1 and bcr1 mutants depended on Ace2/Brg1 regulators and required increased expression of genes encoding Cek1 MAP kinase and its downstream target Cph1. The intricate temperature-dependent regulatory mechanisms under hypoxia suggest that C. albicans restricts hyphal morphogenesis in oxygen-poor body niches, possibly to persist as a commensal in the human host.


Assuntos
Candida albicans/crescimento & desenvolvimento , Morfogênese , Oxigênio/metabolismo , Adaptação Fisiológica , Sequência de Bases , Candida albicans/metabolismo , Proteínas de Ligação a DNA/fisiologia , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/fisiologia , Regulação Fúngica da Expressão Gênica , Ontologia Genética , Genes Fúngicos , Hifas/crescimento & desenvolvimento , Hifas/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Ligação Proteica , Transdução de Sinais , Fatores de Transcrição/fisiologia , Transcrição Gênica
16.
J Chem Inf Model ; 56(11): 2225-2233, 2016 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-27684523

RESUMO

We report development and prospective validation of a QSAR model of the unbound brain-to-plasma partition coefficient, Kp,uu,brain, based on the in-house data set of ∼1000 compounds. We discuss effects of experimental variability, explore the applicability of both regression and classification approaches, and evaluate a novel, model-within-a-model approach of including P-glycoprotein efflux prediction as an additional variable. When tested on an independent test set of 91 internal compounds, incorporation of P-glycoprotein efflux information significantly improves the model performance resulting in an R2 of 0.53, RMSE of 0.57, Spearman's Rho correlation coefficient of 0.73, and qualitative prediction accuracy of 0.8 (kappa = 0.6). In addition to improving the performance, one of the key advantages of this approach is the larger chemical space coverage provided indirectly through incorporation of the in vitro, higher throughput data set that is 4 times larger than the in vivo data set.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Encéfalo/metabolismo , Relação Quantitativa Estrutura-Atividade , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/sangue , Animais , Masculino , Camundongos , Permeabilidade , Transporte Proteico
17.
Antimicrob Agents Chemother ; 59(1): 527-35, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25385102

RESUMO

Despite years of research dedicated to preventing the sexual transmission of herpes simplex virus 2 (HSV-2), there is still no protective vaccine or microbicide against one of the most common sexually transmitted infections in the world. Using a phage display library constructed from a llama immunized with recombinant HSV-2 glycoprotein D, we identified a single-domain antibody VHH, R33, which binds to the viral surface glycoprotein D. Although R33 does not demonstrate any HSV-2 neutralization activity in vitro, when expressed with the cytotoxic domain of exotoxin A, the resulting immunotoxin (R33ExoA) specifically and potently kills HSV-2-infected cells, with a 50% neutralizing dilution (IC50) of 6.7 nM. We propose that R33ExoA could be used clinically to prevent transmission of HSV-2 through killing of virus-producing epithelial cells during virus reactivation. R33 could also potentially be used to deliver other cytotoxic effectors to HSV-2-infected cells.


Assuntos
Antivirais/farmacologia , Herpesvirus Humano 2/efeitos dos fármacos , Anticorpos de Domínio Único/farmacologia , Proteínas do Envelope Viral/metabolismo , ADP Ribose Transferases/genética , ADP Ribose Transferases/imunologia , Animais , Toxinas Bacterianas/genética , Toxinas Bacterianas/imunologia , Camelídeos Americanos , Chlorocebus aethiops , Exotoxinas/genética , Exotoxinas/imunologia , Imunotoxinas/genética , Imunotoxinas/imunologia , Imunotoxinas/farmacologia , Testes de Neutralização , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/farmacologia , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/imunologia , Testes de Toxicidade/métodos , Células Vero/efeitos dos fármacos , Células Vero/virologia , Fatores de Virulência/genética , Fatores de Virulência/imunologia , Exotoxina A de Pseudomonas aeruginosa
19.
J Virol ; 88(10): 5455-61, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24574416

RESUMO

UNLABELLED: Nelfinavir (NFV) is an HIV-1 protease inhibitor with demonstrated antiviral activity against herpes simplex virus 1 (HSV-1) and several other herpesviruses. However, the stages of HSV-1 replication inhibited by NFV have not been explored. In this study, we investigated the effects of NFV on capsid assembly and envelopment. We confirmed the inhibitory effects of NFV on HSV-1 replication by plaque assay and found that treatment with NFV did not affect capsid assembly, activity of the HSV-1 maturational protease, or formation of DNA-containing capsids in the nucleus. Confocal and electron microscopy studies showed that these capsids were transported to the cytoplasm but failed to complete secondary envelopment and subsequent exit from the cell. Consistent with the microscopy results, a light-scattering band corresponding to enveloped virions was not evident following sucrose gradient rate-velocity separation of lysates from drug-treated cells. Evidence of a possibly related effect of NFV on viral glycoprotein maturation was also discovered. NFV also inhibited the replication of an HSV-1 thymidine kinase mutant resistant to nucleoside analogues such as acyclovir. Given that NFV is neither a nucleoside mimic nor a known inhibitor of nucleic acid synthesis, this was expected and suggests its potential as a coinhibitor or alternate antiviral therapeutic agent in cases of resistance. IMPORTANCE: Nelfinavir (NFV) is a clinically important antiviral drug that inhibits production of infectious HIV. It was reported to inhibit herpesviruses in cell culture. Herpes simplex virus 1 (HSV-1) infections are common and often associated with several diseases. The studies we describe here confirm and extend earlier findings by investigating how NFV interferes with HSV-1 replication. We show that early steps in virus formation (e.g., assembly of DNA-containing capsids in the nucleus and their movement into the cytoplasm) appear to be unaffected by NFV, whereas later steps (e.g., final envelopment in the cytoplasm and release of infectious virus from the cell) are severely restricted by the drug. Our findings provide the first insight into how NFV inhibits HSV-1 replication and suggest that this drug may have applications for studying the herpesvirus envelopment process. Additionally, NFV may have therapeutic value alone or in combination with other antivirals in treating herpesvirus infections.


Assuntos
Antivirais/farmacologia , Herpesvirus Humano 1/efeitos dos fármacos , Nelfinavir/farmacologia , Montagem de Vírus/efeitos dos fármacos , Liberação de Vírus/efeitos dos fármacos , Animais , Linhagem Celular , Humanos , Microscopia Confocal , Microscopia Eletrônica , Ultracentrifugação , Ensaio de Placa Viral
20.
J Virol ; 88(11): 5927-35, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24600000

RESUMO

UNLABELLED: We have shown that glycoprotein K (gK) and its interacting partner, the UL20 protein, play crucial roles in virion envelopment. Specifically, virions lacking either gK or UL20 fail to acquire an envelope, thus causing accumulation of capsids in the cytoplasm of infected cells. The herpes simplex virus 1 (HSV-1) UL37 protein has also been implicated in cytoplasmic virion envelopment. To further investigate the role of UL37 in virion envelopment, the recombinant virus DC480 was constructed by insertion of a 12-amino-acid protein C (protC) epitope tag within the UL37 amino acid sequence immediately after amino acid 480. The DC480 mutant virus expressed full-size UL37 as detected by the anti-protC antibody in Western immunoblots, accumulated unenveloped capsids in the cytoplasm of infected cells, and produced very small plaques on African green monkey kidney (Vero) cells that were similar in size to those produced by the UL20-null and UL37-null viruses. The DC480 virus replicated nearly 4 log less efficiently than the parental wild-type virus when grown on Vero cells. However, DC480 mutant virus titers increased nearly 20-fold when the virus was grown on FRT cells engineered to express the UL20 gene in comparison to the titers on Vero cells, while the UL37-null virus replicated approximately 20-fold less efficiently than the DC480 virus on FRT cells. Coimmunoprecipitation experiments and proximity ligation assays showed that gK and UL20 interact with the UL37 protein in infected cells. Collectively, these results indicate that UL37 interacts with the gK-UL20 protein complex to facilitate cytoplasmic virion envelopment. IMPORTANCE: Herpes simplex viruses acquire their final envelopes by budding into cytoplasmic membranes derived from the trans-Golgi network (TGN). The tegument proteins UL36 and UL37 are known to be transported to the TGN sites of virus envelopment and to function in virion envelopment, since mutants lacking UL37 accumulate capsids in the cytoplasm that are unable to bud into TGN membranes. Viral glycoprotein K (gK) also functions in cytoplasmic envelopment, in a protein complex with the membrane-associated protein UL20 (UL20mp). This work shows for the first time that the UL37 protein functionally interacts with gK and UL20 to facilitate cytoplasmic virion envelopment. This work may lead to the design of specific drugs that can interrupt UL37 interactions with the gK-UL20 protein complex, providing new ways to combat herpesviral infections.


Assuntos
Glicoproteínas/metabolismo , Herpesvirus Humano 1/genética , Proteínas do Envelope Viral/metabolismo , Proteínas Virais/metabolismo , Proteínas Estruturais Virais/metabolismo , Vírion/metabolismo , Animais , Western Blotting , Chlorocebus aethiops , Citoplasma/metabolismo , Citoplasma/virologia , Primers do DNA , Herpesvirus Humano 1/metabolismo , Imunoprecipitação , Microscopia Eletrônica de Transmissão , Células Vero , Proteínas Estruturais Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA