Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(1): e2307086120, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38147543

RESUMO

The salt-inducible kinases (SIK) 1-3 are key regulators of pro- versus anti-inflammatory cytokine responses during innate immune activation. The lack of highly SIK-family or SIK isoform-selective inhibitors suitable for repeat, oral dosing has limited the study of the optimal SIK isoform selectivity profile for suppressing inflammation in vivo. To overcome this challenge, we devised a structure-based design strategy for developing potent SIK inhibitors that are highly selective against other kinases by engaging two differentiating features of the SIK catalytic site. This effort resulted in SIK1/2-selective probes that inhibit key intracellular proximal signaling events including reducing phosphorylation of the SIK substrate cAMP response element binding protein (CREB) regulated transcription coactivator 3 (CRTC3) as detected with an internally generated phospho-Ser329-CRTC3-specific antibody. These inhibitors also suppress production of pro-inflammatory cytokines while inducing anti-inflammatory interleukin-10 in activated human and murine myeloid cells and in mice following a lipopolysaccharide challenge. Oral dosing of these compounds ameliorates disease in a murine colitis model. These findings define an approach to generate highly selective SIK1/2 inhibitors and establish that targeting these isoforms may be a useful strategy to suppress pathological inflammation.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Proteínas Serina-Treonina Quinases , Camundongos , Humanos , Animais , Proteínas Serina-Treonina Quinases/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Citocinas , Inflamação/tratamento farmacológico , Isoformas de Proteínas , Anti-Inflamatórios/farmacologia , Imunidade Inata , Fatores de Transcrição
2.
PLoS One ; 19(3): e0298419, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38452024

RESUMO

Genetic screening of pools of mutants can reveal genetic determinants involved in complex biological interactions, processes, and systems. We previously constructed two single-gene deletion resources for Salmonella enterica serovar Typhimurium 14028s in which kanamycin (KanR) and chloramphenicol (CamR) cassettes were used to replace non-essential genes. We have now used lambda-red recombination to convert the antibiotic cassettes in these resources into a tetracycline-resistant (TetR) version where each mutant contains a different 21-base barcode flanked by Illumina Read1 and Read2 primer sequences. A motility assay of a pool of the entire library, followed by a single-tube processing of the bacterial pellet, PCR, and sequencing, was used to verify the performance of the barcoded TetR collection. The new resource is useful for experiments with defined subsets of barcoded mutant strains where biological bottlenecks preclude high numbers of founder bacteria, such as in animal infections. The TetR version of the library will also facilitate the construction of triple mutants by transduction. The resource of 6197 mutants covering 3490 genes is deposited at Biological and Emerging Infections Resources (beiresources.org).


Assuntos
Salmonella enterica , Salmonella typhimurium , Animais , Salmonella typhimurium/genética , Sorogrupo , Deleção de Genes , Antibacterianos , Tetraciclina , Bactérias
3.
Front Microbiol ; 15: 1387498, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38812689

RESUMO

Probiotic bacteria have been proposed as an alternative to antibiotics for the control of antimicrobial resistant enteric pathogens. The mechanistic details of this approach remain unclear, in part because pathogen reduction appears to be both strain and ecology dependent. Here we tested the ability of five probiotic strains, including some from common probiotic genera Lactobacillus and Bifidobacterium, to reduce binding of Salmonella enterica sv. Typhimurium to epithelial cells in vitro. Bifidobacterium longum subsp. infantis emerged as a promising strain; however, S. Typhimurium infection outcome in epithelial cells was dependent on inoculation order, with B. infantis unable to rescue host cells from preceding or concurrent infection. We further investigated the complex mechanisms underlying this interaction between B. infantis, S. Typhimurium, and epithelial cells using a multi-omics approach that included gene expression and altered metabolism via metabolomics. Incubation with B. infantis repressed apoptotic pathways and induced anti-inflammatory cascades in epithelial cells. In contrast, co-incubation with B. infantis increased in S. Typhimurium the expression of virulence factors, induced anaerobic metabolism, and repressed components of arginine metabolism as well as altering the metabolic profile. Concurrent application of the probiotic and pathogen notably generated metabolic profiles more similar to that of the probiotic alone than to the pathogen, indicating a central role for metabolism in modulating probiotic-pathogen-host interactions. Together these data imply crosstalk via small molecules between the epithelial cells, pathogen and probiotic that consistently demonstrated unique molecular mechanisms specific probiotic/pathogen the individual associations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA