Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
1.
Eur J Neurol ; 30(11): 3581-3594, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36593694

RESUMO

BACKGROUND AND PURPOSE: The role of the gut microbiome in the pathogenesis of Parkinson disease (PD) is under intense investigation, and the results presented are still very heterogeneous. These discrepancies arise not only from the highly heterogeneous pathology of PD, but also from widely varying methodologies at all stages of the workflow, from sampling to final statistical analysis. The aim of the present work is to harmonize the workflow across studies to reduce the methodological heterogeneity and to perform a pooled analysis to account for other sources of heterogeneity. METHODS: We performed a systematic review to identify studies comparing the gut microbiota of PD patients to healthy controls. A workflow was designed to harmonize processing across all studies from bioinformatics processing to final statistical analysis using a Bayesian random-effects meta-analysis based on individual patient-level data. RESULTS: The results show that harmonizing workflows minimizes differences between statistical methods and reveals only a small set of taxa being associated with the pathogenesis of PD. Increased shares of the genera Akkermansia and Bifidobacterium and decreased shares of the genera Roseburia and Faecalibacterium were most characteristic for PD-associated microbiota. CONCLUSIONS: Our study summarizes evidence that reduced levels of butyrate-producing taxa in combination with possible degradation of the mucus layer by Akkermansia may promote intestinal inflammation and reduced permeability of the gut mucosal layer. This may allow potentially pathogenic metabolites to transit and enter the enteric nervous system.

2.
Nanomedicine ; 54: 102710, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37734452

RESUMO

Self-assembled multivalent DNA nanocages are an emerging class of molecules useful for biomedicine applications. Here, we investigated the molecular mechanisms of cytotoxicity induced by AS1411 free aptamer, AS1411-linked nanocages (Apt-NCs) and nanocages harboring both folate and AS1411 functionalization (Fol-Apt-NCs) in HeLa and MDA-MB-231 cancer cell lines. The three treatments showed different cytotoxic efficacy and Fol-Apt-NCs resulted the most effective in inhibiting cell proliferation and inducing apoptotic pathways and ROS activation in both HeLa and MDA-MB-231 cells. RNA-seq analysis allowed to identify biological functions and genes altered by the various treatments, depending on the AS1411 route of intracellular entry, highlighting the different behavior of the two cancer cell lines. Notably, Fol-Apt-NCs altered the expression of a subset of genes associated to cancer chemoresistance in MDA-MB-231, but not in HeLa cells, and this may explain the increased chemosensitivity to drugs delivered through DNA nanocages of the triple-negative breast cancer cells.


Assuntos
Antineoplásicos , Aptâmeros de Nucleotídeos , Neoplasias , Humanos , Células HeLa , Ácido Fólico , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Oligodesoxirribonucleotídeos/farmacologia , Aptâmeros de Nucleotídeos/farmacologia , DNA , Linhagem Celular Tumoral
3.
J Enzyme Inhib Med Chem ; 37(1): 1404-1410, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35603503

RESUMO

Nature has been always a great source of possible lead compounds to develop new drugs against several diseases. Here we report the identification of a natural compound, membranoid G, derived from the Antarctic sponge Dendrilla antarctica displaying an in vitro inhibitory activity against human DNA topoisomerase 1B. The experiments indicate that membranoid G, when pre-incubated with the enzyme, strongly and irreversibly inhibits the relaxation of supercoiled DNA. This compound completely inhibits the cleavage step of the enzyme catalytic mechanism by preventing protein binding to the DNA. Membranoid G displays also a cytotoxic effect on tumour cell lines, suggesting its use as a possible lead compound to develop new anticancer drugs.


Assuntos
Antineoplásicos , Neoplasias , Regiões Antárticas , Antineoplásicos/química , Antineoplásicos/farmacologia , DNA/química , DNA Topoisomerases Tipo I/metabolismo , DNA Topoisomerases Tipo II/metabolismo , Humanos , Inibidores da Topoisomerase
4.
Inorg Chem ; 60(18): 14174-14189, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34477373

RESUMO

Ruthenium(II) complexes (Ru1-Ru5), with the general formula [Ru(N-S)(dppe)2]PF6, bearing two 1,2-bis(diphenylphosphino)ethane (dppe) ligands and a series of mercapto ligands (N-S), have been developed. The combination of these ligands in the complexes endowed hydrophobic species with high cytotoxic activity against five cancer cell lines. For the A549 (lung) and MDA-MB-231 (breast) cancer cell lines, the IC50 values of the complexes were 288- to 14-fold lower when compared to cisplatin. Furthermore, the complexes were selective for the A549 and MDA-MB-231 cancer cell lines compared to the MRC-5 nontumor cell line. The multitarget character of the complexes was investigated by using calf thymus DNA (CT DNA), human serum albumin, and human topoisomerase IB (hTopIB). The complexes potently inhibited hTopIB. In particular, complex [Ru(dmp)(dppe)2]PF6 (Ru3), bearing the 4,6-diamino-2-mercaptopyrimidine (dmp) ligand, effectively inhibited hTopIB by acting on both the cleavage and religation steps of the catalytic cycle of this enzyme. Molecular docking showed that the Ru1-Ru5 complexes have binding affinity by active sites on the hTopI and hTopI-DNA, mainly via π-alkyl and alkyl hydrophobic interactions, as well as through hydrogen bonds. Complex Ru3 displayed significant antitumor activity against murine melanoma in mouse xenograph models, but this complex did not damage DNA, as revealed by Ames and micronucleus tests.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , DNA Topoisomerases Tipo I/metabolismo , Fosfinas/farmacologia , Rutênio/farmacologia , Inibidores da Topoisomerase I/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Ligantes , Fosfinas/química , Rutênio/química , Inibidores da Topoisomerase I/síntese química , Inibidores da Topoisomerase I/química , Células Tumorais Cultivadas
5.
Int J Mol Sci ; 22(8)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923641

RESUMO

Natural products are widely used as source for drugs development. An interesting example is represented by natural drugs developed against human topoisomerase IB, a ubiquitous enzyme involved in many cellular processes where several topological problems occur due the formation of supercoiled DNA. Human topoisomerase IB, involved in the solution of such problems relaxing the DNA cleaving and religating a single DNA strand, represents an important target in anticancer therapy. Several natural compounds inhibiting or poisoning this enzyme are under investigation as possible new drugs. This review summarizes the natural products that target human topoisomerase IB that may be used as the lead compounds to develop new anticancer drugs. Moreover, the natural compounds and their derivatives that are in clinical trial are also commented on.


Assuntos
Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , Neoplasias/tratamento farmacológico , Inibidores da Topoisomerase I/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Produtos Biológicos/química , Produtos Biológicos/uso terapêutico , Ensaios Clínicos como Assunto , DNA Topoisomerases Tipo I/química , DNA Topoisomerases Tipo I/metabolismo , Humanos , Inibidores da Topoisomerase I/química , Inibidores da Topoisomerase I/uso terapêutico
6.
Int J Mol Sci ; 22(14)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34299074

RESUMO

Human DNA topoisomerase IB controls the topological state of supercoiled DNA through a complex catalytic cycle that consists of cleavage and religation reactions, allowing the progression of fundamental DNA metabolism. The catalytic steps of human DNA topoisomerase IB were analyzed in the presence of a drug, obtained by the open-access drug bank Medicines for Malaria Venture. The experiments indicate that the compound strongly and irreversibly inhibits the cleavage step of the enzyme reaction and reduces the cell viability of three different cancer cell lines. Molecular docking and molecular dynamics simulations suggest that the drug binds to the human DNA topoisomerase IB-DNA complex sitting inside the catalytic site of the enzyme, providing a molecular explanation for the cleavage-inhibition effect. For all these reasons, the aforementioned drug could be a possible lead compound for the development of an efficient anti-tumor molecule targeting human DNA topoisomerase IB.


Assuntos
Antimaláricos/farmacologia , Antineoplásicos/farmacologia , Simulação por Computador , DNA Topoisomerases Tipo I/química , DNA/metabolismo , Inibidores da Topoisomerase I/farmacologia , Catálise , Domínio Catalítico , DNA/química , DNA/efeitos dos fármacos , DNA Topoisomerases Tipo I/metabolismo , Humanos , Técnicas In Vitro , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Conformação Proteica
7.
Nucleic Acids Res ; 46(19): 9951-9959, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30247614

RESUMO

We propose an experimental and simulative approach to study the effect of integrating a DNA functional device into a large-sized DNA nanostructure. We selected, as a test bed, a well-known and characterized pH-dependent clamp-switch, based on a parallel DNA triple helix, to be integrated into a truncated octahedral scaffold. We designed, simulated and experimentally characterized two different functionalized DNA nanostructures, with and without the presence of a spacer between the scaffold and the functional elements. The experimental and simulative data agree in validating the need of a spacer for the occurrence of the pH dependent switching mechanism. The system is fully reversible and the switching can be monitored several times without any perturbation, maintaining the same properties of the isolated clamp switch in solution.


Assuntos
DNA/síntese química , Nanocápsulas/química , Nanoestruturas/química , Conformação de Ácido Nucleico , Sítios de Ligação/genética , DNA/química , DNA/genética , Portadores de Fármacos/síntese química , Portadores de Fármacos/química , Composição de Medicamentos , Sistemas de Liberação de Medicamentos , Engenharia Genética , Concentração de Íons de Hidrogênio , Simulação de Dinâmica Molecular , Nanotecnologia/métodos
8.
J Chem Inf Model ; 59(6): 2746-2752, 2019 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-31074618

RESUMO

The topology of a pH-dependent triple helix DNA nanoswitch family has been characterized through simulative analysis to evaluate the efficiency of the switching mechanism varying the length of the loop connecting the two strands forming the double helix portion. In detail, the system is formed by a double helix made by two six base complementary sequences, connected by one loop having an increasing number of thymidines, namely 5, 7, or 9. The triplex-forming sequence made by six bases, connected to the double helix through a constant 25 base loop, interacts at pH 5.0 through Hoogsteen hydrogen bonds with one strand of the double helical region. We demonstrate, through molecular dynamics simulation, that the thymidine loop length exerts a fine regulatory role for the stability of the triple helix structure and is critical in modulating the switching mechanism triggered by the pH increase.


Assuntos
DNA/química , Simulação de Dinâmica Molecular , Nanoestruturas/química , Sequência de Bases , DNA/genética , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Distribuição Normal , Conformação de Ácido Nucleico
9.
Int J Mol Sci ; 21(1)2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31861821

RESUMO

A computational and experimental integrated approach was applied in order to study the effect of engineering four DNA hairpins into an octahedral truncated DNA nanocage, to obtain a nanostructure able to recognize and bind specific oligonucleotide sequences. Modeling and classical molecular dynamics simulations show that the new H4-DNA nanocage maintains a stable conformation with the closed hairpins and, when bound to complementary oligonucleotides produces an opened conformation that is even more stable due to the larger hydrogen bond number between the hairpins and the oligonucleotides. The internal volume of the open conformation is much larger than the closed one, switching from 370 to 650 nm3, and the predicted larger conformational change is experimentally detectable by gel electrophoresis. H4-DNA nanocages display high stability in serum, can efficiently enter the cells where they are stable and maintain the ability to bind, and sequester an intracellular-specific oligonucleotide. Moreover, H4-DNA nanocages, modified in order to recognize the oncogenic miR21, are able to seize miRNA molecules inside cells in a selective manner.


Assuntos
DNA/química , DNA/farmacologia , Inativação Gênica , MicroRNAs/genética , Células HeLa , Humanos , Simulação de Dinâmica Molecular , Nanoestruturas/química , Conformação de Ácido Nucleico
10.
Arch Biochem Biophys ; 643: 1-6, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29458004

RESUMO

Human topoisomerase 1B is a ubiquitous and essential enzyme involved in relaxing the topological state of supercoiled DNA to allow the progression of fundamental DNA metabolism. Its enzymatic catalytic cycle consists of cleavage and religation reaction. A ternary fluorescence resonance energy transfer biosensor based on a suicide DNA substrate conjugated with three fluorophores has been developed to monitor both cleavage and religation Topoisomerase I catalytic function. The presence of fluorophores does not alter the specificity of the enzyme catalysis on the DNA substrate. The enzyme-mediated reaction can be tracked in real-time by simple fluorescence measurement, avoiding the use of risky radioactive substrate labeling and time-consuming denaturing gel electrophoresis. The method is applied to monitor the perturbation brought by single mutation on the cleavage or religation reaction and to screen the effect of the camptothecin anticancer drug monitoring the energy transfer decrease during religation reaction. Pathological mutations usually affect only the cleavage or the religation reaction and the proposed approach represent a fast protocol for assessing chemotherapeutic drug efficacy and analyzing mutant's properties.


Assuntos
DNA Topoisomerases Tipo I/metabolismo , DNA/metabolismo , Ensaios Enzimáticos/métodos , Transferência Ressonante de Energia de Fluorescência , Sequência de Bases , DNA/genética , Corantes Fluorescentes/metabolismo , Humanos , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA