Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 8(12): e81247, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24312542

RESUMO

Tropical scleractinian corals are considered autotrophic as they rely mainly on photosynthesis-derived nutrients transferred from their photosymbionts. Corals are also able to capture and ingest suspended particulate organic matter, so heterotrophy can be an important supplementary trophic pathway to optimize coral fitness. The aim of this in situ study was to elucidate the trophic status of 10 coral species under contrasted environmental conditions in a French Polynesian lagoon. Carbon (δ(13)C) and nitrogen (δ(15)N) isotopic compositions of coral host tissues and photosymbionts were determined at 3 different fringing reefs during wet and dry seasons. Our results highlighted spatial variability in stable isotopic compositions of both coral host tissues and photosymbionts. Samples from the site with higher level of suspended particulate matter were (13)C-depleted and (15)N-enriched relative to corals and photosymbionts from less turbid sites. However, differences in both δ(13)C and δ(15)N between coral host tissues and their photosymbionts (Δ(host-photosymbionts 13)C and Δ(host-photosymbionts 15)N) were small (0.27 ± 0.76‰ and 1.40 ± 0.90‰, respectively) and similar at all sites, thus indicating no general increases in the heterotrophic pathway. Depleted δ(13)C and enriched δ(15)N values of coral host tissues measured at the most turbid site were explained by changes in isotopic composition of the inorganic nutrients taken up by photosymbionts and also by changes in rate of isotopic fractionation with environmental conditions. Our results also highlighted a lack of significant temporal variations in δ(13)C and δ(15)N values of coral host and photosymbiont tissues and in Δ(host-photosymbionts 13)C and Δ(host-photosymbionts 15)N values. This temporal stability indicated that corals remained principally autotrophic even during the wet season when photosymbiont densities were lower and the concentrations of phytoplankton were higher. Increased coral heterotrophy with higher food availability thus appears to be species-specific.


Assuntos
Antozoários/metabolismo , Análise Espaço-Temporal , Simbiose , Animais , Antozoários/fisiologia , Isótopos de Carbono/metabolismo , Clorofila/metabolismo , Clorofila A , Isótopos de Nitrogênio/metabolismo , Estações do Ano
2.
Mar Environ Res ; 71(4): 266-74, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21388674

RESUMO

The growth, tentacle development and feeding activity of the benthic polychaete Eupolymnia nebulosa were examined to determine whether UV might affect marine deposit-feeders indirectly through the modification of the nutritional quality of their resources. Since marine invertebrates have higher nutritional requirements during the period following settlement, we tested the effect of UV-altered phytodetritus on freshly settled juveniles of E. nebulosa. Phytodetritus was prepared from cultures of the diatom Skeletonema costatum either grown under or sheltered from UVB radiation. Sterol content of phytodetritus was unmodified by UV radiation. Conversely, phytodetritus was noticeably depleted in polyunsaturated fatty acids. Growth and tentacle development of juveniles fed on altered phytodetritus were reduced by 35% and 15% respectively, suggesting potential deficiencies in essential nutrients. In response to the lower quality of the phytodetritus, juveniles explored a wider area as they search for food, a strategy that could compensate for low food quality.


Assuntos
Diatomáceas/efeitos da radiação , Cadeia Alimentar , Poliquetos/crescimento & desenvolvimento , Raios Ultravioleta/efeitos adversos , Animais , Ácidos Graxos/metabolismo , Comportamento Alimentar/efeitos da radiação , Poliquetos/metabolismo , Esteróis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA