Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Hum Reprod ; 37(4): 669-679, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35150574

RESUMO

STUDY QUESTION: Is there an association between male fertility and spermatozoa mitochondrial DNA (mtDNA) copy number and genome rearrangements? SUMMARY ANSWER: Normal spermatozoa not only have a lower mtDNA copy number but also more DNA rearrangements than spermatozoa of men with severe oligoasthenospermia (SOA). WHAT IS KNOWN ALREADY: While there is a consensus that mtDNA content is decreased in the most fertile spermatozoa, the role of mtDNA sequence alteration in male infertility is unclear. High-throughput sequencing, which allows an exhaustive analysis of mtDNA rearrangements and mutations, could be helpful in this context, but has yet to be used. STUDY DESIGN, SIZE, DURATION: This is an observational study of semen samples obtained from 44 men undergoing ART at an academic infertility centre in France, from October 2018 to November 2020. The men were classified into two groups: 20 men in the SOA group and 24 men with normal semen parameters in the control group. PARTICIPANTS/MATERIALS, SETTING, METHODS: For each patient and control, mtDNA was isolated from sperm fractions from the 40% and 90% layers of the density gradient. The average mtDNA content of each sample was assessed using digital PCR. Deep sequencing was performed using next-generation sequencing. Signal processing and base calling were performed via the embedded pre-processing pipeline, the variants were analysed using an in-house workflow and a dedicated tool, based on soft-clipping, was used to study large mtDNA rearrangements. The distribution and the type of rearrangements and variants were compared between patients with SOA and controls on one hand, and between the 40% and 90% gradient layers, on the other hand. MAIN RESULTS AND THE ROLE OF CHANCE: The mtDNA content of spermatozoa in the SOA group was significantly higher than in the control group (P < 0.0001). Moreover, mtDNA content was significantly higher in spermatozoa from the 40% layer (the most fertile spermatozoa) compared to the 90% layer, both in the SOA (P = 0.02) and the control group (P < 0.0001). The frequency of large mtDNA deletions and duplications was significantly higher in the control group (P = 0.002). Most of these rearrangements are potentially related to DNA breaks and their number was reduced by the removal of the linear mtDNA from the samples. Heteroplasmic variants were found more frequently in the SOA group (P = 0.05) and in the 40% layer (P = 0.03), but none had any obvious functional consequence. LIMITATIONS, REASONS FOR CAUTION: Our findings are novel and significant but should be verified in larger cohorts and other types of male infertility. WIDER IMPLICATIONS OF THE FINDINGS: Our findings suggest that sperm mtDNA rearrangements are not necessarily associated with mitochondrial dysfunction and male infertility. Instead, they seem to be concomitant with the process of mtDNA content reduction in the most potentially fertile spermatozoa. Furthermore, they refute the hypothesis that, in the case of mtDNA alteration, a compensatory mechanism allows an increase in mtDNA copy number to rectify the energy deficit. The increased frequency of mtDNA rearrangements in the most fertile spermatozoa is a novel result that offers new insight into the relation between sperm quality and mtDNA. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by Angers University Hospital (grant AOI CHU Angers 2018), Angers University and the French national research centres INSERM and CNRS. There are no competing interests. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
DNA Mitocondrial , Infertilidade Masculina , DNA Mitocondrial/genética , Fertilidade/genética , Rearranjo Gênico , Humanos , Infertilidade Masculina/genética , Masculino , Mitocôndrias/genética , Análise do Sêmen , Espermatozoides
2.
Hum Reprod ; 34(7): 1313-1324, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31174209

RESUMO

STUDY QUESTION: Does ageing affect the kinetics of the mitochondrial pool during oogenesis and early embryogenesis? SUMMARY ANSWER: While we found no age-related change during oogenesis, the kinetics of mitochondrial DNA content and the expression of the factors involved in mitochondrial biogenesis appeared to be significantly altered during embryogenesis. WHAT IS KNOWN ALREADY: Oocyte mitochondria are necessary for embryonic development. The morphological and functional alterations of mitochondria, as well as the qualitative and quantitative mtDNA anomalies, observed during ovarian ageing may be responsible for the alteration of oocyte competence and embryonic development. STUDY DESIGN, SIZE, DURATION: The study, conducted from November 2016 to November 2017, used 40 mice aged 5-8 weeks and 45 mice aged 9-11 months (C57Bl6/CBA F(1)). A total of 488 immature oocytes, with a diameter ranging from 20 µm to more than 80 µm, were collected from ovaries, and 1088 mature oocytes or embryos at different developmental stages (two PN, one-cell, i.e. syngamy, two-cell, four-cell, eight-cell, morula and blastocyst) were obtained after ovarian stimulation and, for embryos, mating. PARTICIPANTS/MATERIALS, SETTING, METHODS: Mitochondrial DNA was quantified by quantitative PCR. We used quantitative reverse transcriptase PCR (RT-PCR) (microfluidic method) to study the relative expression of three genes involved in the key steps of embryogenesis, i.e. embryonic genome activation (HSPA1) and differentiation (CDX2 and NANOG), two mtDNA genes (CYB and ND2) and five genes essential for mitochondrial biogenesis (PPARGC1A, NRF1, POLG, TFAM and PRKAA). The statistical analysis was based on mixed linear regression models applying a logistic link function (STATA v13.1 software), with values of P < 0.05 being considered significant. MAIN RESULTS AND THE ROLE OF CHANCE: During oogenesis, there was a significant increase in oocyte mtDNA content (P < 0.0001) without any difference between the two groups of mice (P = 0.73). During the first phase of embryogenesis, i.e. up to the two-cell stage, embryonic mtDNA decreased significantly in the aged mice (P < 0.0001), whereas it was stable for young mice (young/old difference P = 0.015). The second phase of embryogenesis, i.e. between the two-cell and eight-cell stages, was characterized by a decrease in embryonic mtDNA for young mice (P = 0.013) only (young/old difference P = 0.038). During the third phase, i.e. between the eight-cell and blastocyst stage, there was a significant increase in embryonic mtDNA content in young mice (P < 0.0001) but not found in aged mice (young/old difference P = 0.002). We also noted a faster expression of CDX2 and NANOG in the aged mice than in the young mice during the second (P = 0.007 and P = 0.02, respectively) and the third phase (P = 0.01 and P = 0.008, respectively) of embryogenesis. The expression of mitochondrial genes CYB and ND2 followed similar kinetics and was equivalent for both groups of mice, with a significant increase during the third phase (P < 0.01). Of the five genes involved in mitochondrial biogenesis, i.e. PPARGC1A, NRF1, POLG, TFAM and PRKAA, the expression of three genes decreased significantly during the first phase only in young mice (NRF1, P = 0.018; POLGA, P = 0.002; PRKAA, P = 0.010), with no subsequent difference compared to old mice. In conclusion, during early embryogenesis in the old mice, we suspect that the lack of a replicatory burst before the two-cell stage, associated with the early arrival at the minimum threshold value of mtDNA, together with the absence of an increase of mtDNA during the last phase, might potentially deregulate the key stages of early embryogenesis. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: Because of the ethical impossibility of working on a human, this study was conducted only on a murine model. As superovulation was used, we cannot totally exclude that the differences observed were, at least partially, influenced by differences in ovarian response between young and old mice. WIDER IMPLICATIONS OF THE FINDINGS: Our findings suggest a pathophysiological explanation for the link observed between mitochondria and the deterioration of oocyte quality and early embryonic development with age. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the University of Angers, France, by the French national research centres INSERM and the CNRS and, in part, by PHASE Division, INRA. There are no competing interests.


Assuntos
DNA Mitocondrial/metabolismo , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário , Idade Materna , Oócitos/metabolismo , Oogênese , Envelhecimento/fisiologia , Animais , Hormônio Antimülleriano/sangue , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Mitocôndrias/fisiologia , Biogênese de Organelas , Ovário/fisiologia , Gravidez
3.
J Assist Reprod Genet ; 36(2): 223-228, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30362054

RESUMO

PURPOSE: The quantification of mtDNA in cumulus granulosa cells (CGCs) surrounding an oocyte has been positively linked with morphological embryonic quality. In the present study, we evaluated the link between the amount of mtDNA in CGCs surrounding an oocyte and the chances for the corresponding embryo of implanting and leading to an ongoing pregnancy. METHODS: This is an observational study, performed on 84 oocyte-cumulus-complexes (OCCs) having led to the replacement of an embryo in the maternal uterus, retrieved from 71 patients undergoing IVF with intracytoplasmic sperm. The OCCs were classified in two groups, one including 26 OCCs having led to an implanted embryo and the other including 58 OCCs having led to a non-implanted embryo. The average mtDNA content of CGCs was assessed by using a quantitative real-time PCR technique. RESULTS: Significantly higher mtDNA copy numbers in CGCs were associated with implanted embryos than with non-implanted embryos (mean 215 [sd 375] and 59 [sd 72], respectively; p < 104). Multivariate analysis, taking into account the women's age, the embryo quality, and the AMH level, suggests an independent relationship between the mtDNA content of CGCs and the potential of embryo implantation. CONCLUSION: During in vitro fertilization (IVF) procedures, the probability of the implantation of the embryo appears to be closely correlated to the mtDNA copy numbers in the CGCs. Our results highlight the interest of mtDNA quantification in GCGs as a biomarker of the potential of embryo implantation.


Assuntos
DNA Mitocondrial/genética , Implantação do Embrião/genética , Fertilização in vitro , Adulto , Células do Cúmulo/metabolismo , Feminino , Humanos , Mitocôndrias/genética , Mitocôndrias/patologia , Oócitos/crescimento & desenvolvimento , Ploidias , Gravidez , Taxa de Gravidez
4.
Hum Reprod ; 32(3): 607-614, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28077604

RESUMO

STUDY QUESTION: Could the mitochondrial DNA (mtDNA) content of cumulus granulosa cells (CGCs) be related to oocyte competence? SUMMARY ANSWER: The quality of embryos obtained during IVF procedures appears to be linked to mtDNA copy numbers in the CGCs. WHAT IS KNOWN ALREADY: Oocyte quality is linked to oocyte mtDNA content in the human and other species, and the mtDNA copy number of the oocyte is related to that of the corresponding CGCs. Moreover, the quantification of CGC mtDNA has recently been proposed as a biomarker of embryo viability. STUDY DESIGN SIZE, DURATION: An observational study was performed on 452 oocyte-cumulus complexes retrieved from 62 patients undergoing ICSI at the ART Center of the University Hospital of Angers, France, from January to May 2015. PARTICIPANTS/MATERIALS, SETTING, METHODS: The average mtDNA content of CGCs was assessed by using a quantitative real-time PCR technique. The relationship between CGC mtDNA content and oocyte maturity and fertilizability, on one hand, and embryo quality, on the other, was investigated using univariate and multivariate generalized models with fixed and mixed effects. MAIN RESULTS AND THE ROLE OF CHANCE: No relationship was found between CGC mtDNA content and oocyte maturity or fertilizability. In contrast, there was a significant link between the content of mtDNA in CGCs surrounding an oocyte and the embryo quality, with significantly higher mtDNA copy numbers being associated with good quality embryos compared with fair or poor quality embryos [interquartile range, respectively, 738 (250-1228) and 342 (159-818); P = 0.006]. However, the indication provided by the quantification of CGC mtDNA concerning the eventuality of good embryo quality was seriously subject to patient effect (AUC = 0.806, 95%CI = 0.719-0.869). The quantity of CGC mtDNA was influenced by BMI and smoking. LARGE SCALE DATA: N/A. LIMITATIONS REASONS FOR CAUTION: The quantification of CGC mtDNA may indicate embryo quality. However, since it is affected by patient specificity, it should be used with caution. It remains to be seen whether this marker could directly predict the implantation capacity of the embryo, which is the main objective in IVF practice. WIDER IMPLICATIONS OF THE FINDINGS: Our study suggests that the quantification of CGC mtDNA may be a novel biomarker of embryo viability. However, patient specificity makes it impossible to establish a general threshold value, valid for all patients. Nevertheless, further studies are needed to determine whether the quantification of CGC mtDNA may, in combination with the morpho-kinetic method, offer an additional criterion for selecting the best embryo for transfer from a given cohort. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the University Hospital of Angers, the University of Angers, France, and the French national research centres INSERM and the CNRS. There were no competing interests.


Assuntos
Células do Cúmulo/metabolismo , DNA Mitocondrial/metabolismo , Implantação do Embrião/fisiologia , Fertilização in vitro , Oócitos/metabolismo , Adulto , Transferência Embrionária , Feminino , Humanos
5.
Hum Reprod ; 32(10): 2101-2109, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28938736

RESUMO

STUDY QUESTION: Does ovarian ageing increase the number of heteroplasmic mitochondrial DNA (mtDNA) point mutations in oocytes? SUMMARY ANSWER: Our results suggest that oocytes are not subject to the accumulation of mtDNA point mutations during ovarian ageing. WHAT IS KNOWN ALREADY: Ageing is associated with the alteration of mtDNA integrity in various tissues. Primary oocytes, present in the ovary since embryonic life, may accumulate mtDNA mutations during the process of ovarian ageing. STUDY DESIGN, SIZE, DURATION: This was an observational study of 53 immature oocyte-cumulus complexes retrieved from 35 women undergoing IVF at the University Hospital of Angers, France, from March 2013 to March 2014. The women were classified in two groups, one including 19 women showing signs of ovarian ageing objectified by a diminished ovarian reserve (DOR), and the other, including 16 women with a normal ovarian reserve (NOR), which served as a control group. PARTICIPANTS/MATERIALS, SETTING, METHODS: mtDNA was extracted from isolated oocytes, and from their corresponding cumulus cells (CCs) considered as a somatic cell compartment. The average mtDNA content of each sample was assessed by using a quantitative real-time PCR technique. Deep sequencing was performed using the Ion Torrent Proton for Next-Generation Sequencing. Signal processing and base calling were done by the embedded pre-processing pipeline and the variants were analyzed using an in-house workflow. The distribution of the different variants between DOR and NOR patients, on one hand, and oocyte and CCs, on the other, was analyzed with the generalized mixed linear model to take into account the cluster of cells belonging to a given mother. MAIN RESULTS AND THE ROLE OF CHANCE: There were no significant differences between the numbers of mtDNA variants between the DOR and the NOR patients, either in the oocytes (P = 0.867) or in the surrounding CCs (P = 0.154). There were also no differences in terms of variants with potential functional consequences. De-novo mtDNA variants were found in 28% of the oocytes and in 66% of the CCs with the mean number of variants being significantly different (respectively 0.321, SD = 0.547 and 1.075, SD = 1.158) (P < 0.0001). Variants with a potential functional consequence were also overrepresented in CCs compared with oocytes (P = 0.0019). LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: Limitations may be due to the use of immature oocytes discarded during the assisted reproductive technology procedure, the small size of the sample, and the high-throughput sequencing technology that might not have detected heteroplasmy levels lower than 2%. WIDER IMPLICATIONS OF THE FINDINGS: The alteration of mtDNA integrity in oocytes during ovarian ageing is a recurring question to which our pilot study suggests a reassuring answer. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the University Hospital of Angers, the University of Angers, France, and the French national research centers, INSERM and the CNRS. There are nocompeting interests.


Assuntos
Envelhecimento/fisiologia , Células do Cúmulo/metabolismo , DNA Mitocondrial/genética , Oócitos/metabolismo , Reserva Ovariana/fisiologia , Adulto , Envelhecimento/genética , Estudos de Casos e Controles , DNA Mitocondrial/isolamento & purificação , Feminino , Fertilização in vitro , Humanos , Modelos Lineares , Mutação , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA