RESUMO
France suffered, in 2016, the most extreme wheat yield decline in recent history, with some districts losing 55% yield. To attribute causes, we combined the largest coherent detailed wheat field experimental dataset with statistical and crop model techniques, climate information, and yield physiology. The 2016 yield was composed of up to 40% fewer grains that were up to 30% lighter than expected across eight research stations in France. The flowering stage was affected by prolonged cloud cover and heavy rainfall when 31% of the loss in grain yield was incurred from reduced solar radiation and 19% from floret damage. Grain filling was also affected as 26% of grain yield loss was caused by soil anoxia, 11% by fungal foliar diseases, and 10% by ear blight. Compounding climate effects caused the extreme yield decline. The likelihood of these compound factors recurring under future climate change is estimated to change with a higher frequency of extremely low wheat yields.
Assuntos
Grão Comestível , Triticum , Triticum/fisiologia , França , SoloRESUMO
The natural 13 C abundance (δ13 C) in plant leaves has been used for decades with great success in agronomy to monitor water-use efficiency and select modern cultivars adapted to dry conditions. However, in wheat, it is also important to find genotypes with high carbon allocation to spikes and grains, and thus with a high harvest index (HI) and/or low carbon losses via respiration. Finding isotope-based markers of carbon partitioning to grains would be extremely useful since isotope analyses are inexpensive and can be performed routinely at high throughput. Here, we took the advantage of a set of field trials made of more than 600 plots with several wheat cultivars and measured agronomic parameters as well as δ13 C values in leaves and grains. We find a linear relationship between the apparent isotope discrimination between leaves and grain (denoted as Δδcorr ), and the respiration use efficiency-to-HI ratio. It means that overall, efficient carbon allocation to grains is associated with a small isotopic difference between leaves and grains. This effect is explained by postphotosynthetic isotope fractionations, and we show that this can be modelled by equations describing the carbon isotope composition in grains along the wheat growth cycle. Our results show that 13 C natural abundance in grains could be useful to find genotypes with better carbon allocation properties and assist current wheat breeding technologies.
Assuntos
Melhoramento Vegetal , Triticum , Carbono , Isótopos de Carbono , Grão Comestível , Folhas de Planta/genética , Triticum/genéticaRESUMO
Wheat grain yield is anticipated to suffer from the increased temperatures expected under climate change. In particular, the effects of post-anthesis temperatures on grain growth and development must be better understood in order to improve crop models. Grain growth and development involve several processes, and we hypothesized that some of the most important processes, namely grain dry biomass and water accumulation, grain volume expansion, and endosperm cell proliferation, will have different thermal sensitivity. To assess this, we established temperature-response curves of these processes for steady post-anthesis temperatures between 15 °C and 36 °C. From anthesis to maturity, grain dry mass, water mass, volume, and endosperm cell number were monitored, whilst considering grain temperature. Different sensitivities to heat of these various processes were revealed. The rate of grain dry biomass accumulation increased linearly up to 25 °C, while the reciprocal of its duration increased linearly up to at least 32 °C. In contrast, the growth rates of traits contributing to grain expansion, such as increase in grain volume and cell numbers, had higher optimum temperatures, while the reciprocal of their durations were significantly lower. These temperature-response curves can contribute to improve current crop models, and allow targeting of specific mechanisms for genetic and genomic studies.
Assuntos
Temperatura Alta , Triticum , Biomassa , Grão Comestível , EndospermaRESUMO
KEY MESSAGE: Environmental clustering helps to identify QTLs associated with grain yield in different water stress scenarios. These QTLs could be useful for breeders to improve grain yields and increase genetic resilience in marginal environments. Drought is one of the main abiotic stresses limiting winter bread wheat growth and productivity around the world. The acquisition of new high-yielding and stress-tolerant varieties is therefore necessary and requires improved understanding of the physiological and genetic bases of drought resistance. A panel of 210 elite European varieties was evaluated in 35 field trials. Grain yield and its components were scored in each trial. A crop model was then run with detailed climatic data and soil water status to assess the dynamics of water stress in each environment. Varieties were registered from 1992 to 2011, allowing us to test timewise genetic progress. Finally, a genome-wide association study (GWAS) was carried out using genotyping data from a 280 K SNP chip. The crop model simulation allowed us to group the environments into four water stress scenarios: an optimal condition with no water stress, a post-anthesis water stress, a moderate-anthesis water stress and a high pre-anthesis water stress. Compared to the optimal water condition, grain yield losses in the stressed conditions were 3.3%, 12.4% and 31.2%, respectively. This environmental clustering improved understanding of the effect of drought on grain yields and explained 20% of the G × E interaction. The greatest genetic progress was obtained in the optimal condition, mostly represented in France. The GWAS identified several QTLs, some of which were specific of the different water stress patterns. Our results make breeding for improved drought resistance to specific environmental scenarios easier and will facilitate genetic progress in future environments, i.e., water stress environments.
Assuntos
Cromossomos de Plantas/genética , Secas , Genes de Plantas/genética , Locos de Características Quantitativas , Estresse Fisiológico , Triticum/genética , Pão/análise , Mapeamento Cromossômico , Desidratação , Ligação Genética , Estudo de Associação Genômica Ampla , Genótipo , Fenótipo , Triticum/fisiologiaRESUMO
Climate change threatens food security by affecting the productivity of major cereal crops. To date, agroclimatic risk projections through indicators have focused on expected hazards exposure during the crop's current vulnerable seasons, without considering the non-stationarity of their phenology under evolving climatic conditions. We propose a new method for spatially classifying agroclimatic risks for wheat, combining high-resolution climatic data with a wheat's phenological model. The method is implemented for French wheat involving three GCM-RCM model pairs and two emission scenarios. We found that the precocity of phenological stages allows wheat to avoid periods of water deficit in the near future. Nevertheless, in the coming decades the emergence of heat stress and increasing water deficit will deteriorate wheat cultivation over the French territory. Projections show the appearance of combined risks of heat and water deficit up to 4 years per decade under the RCP 8.5 scenario. The proposed method provides a deep level of information that enables regional adaptation strategies: the nature of the risk, its temporal and spatial occurrence, and its potential combination with other risks. It's a first step towards identifying potential sites for breeding crop varieties to increase the resilience of agricultural systems.
Assuntos
Mudança Climática , Triticum , Melhoramento Vegetal , França , ÁguaRESUMO
Increasing global food demand will require more food production1 without further exceeding the planetary boundaries2 while simultaneously adapting to climate change3. We used an ensemble of wheat simulation models with improved sink and source traits from the highest-yielding wheat genotypes4 to quantify potential yield gains and associated nitrogen requirements. This was explored for current and climate change scenarios across representative sites of major world wheat producing regions. The improved sink and source traits increased yield by 16% with current nitrogen fertilizer applications under both current climate and mid-century climate change scenarios. To achieve the full yield potential-a 52% increase in global average yield under a mid-century high warming climate scenario (RCP8.5), fertilizer use would need to increase fourfold over current use, which would unavoidably lead to higher environmental impacts from wheat production. Our results show the need to improve soil nitrogen availability and nitrogen use efficiency, along with yield potential.