Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Sci ; 15(2): 528-533, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38179538

RESUMO

The N3O macrocycle of the 12-TMCO ligand stabilizes a high spin (S = 5/2) [FeIII(12-TMCO)(OOtBu)Cl]+ (3-Cl) species in the reaction of [FeII(12-TMCO)(OTf)2] (1-(OTf)2) with tert-butylhydroperoxide (tBuOOH) in the presence of tetraethylammonium chloride (NEt4Cl) in acetonitrile at -20 °C. In the absence of NEt4Cl the oxo-iron(iv) complex 2 [FeIV(12-TMCO)(O)(CH3CN)]2+ is formed, which can be further converted to 3-Cl by adding NEt4Cl and tBuOOH. The role of the cis-chloride ligand in the stabilization of the FeIII-OOtBu moiety can be extended to other anions including the thiolate ligand relevant to the enzyme superoxide reductase (SOR). The present study underlines the importance of subtle electronic changes and secondary interactions in the stability of the biologically relevant metal-dioxygen intermediates. It also provides some rationale for the dramatically different outcomes of the chemistry of iron(iii)peroxy intermediates formed in the catalytic cycles of SOR (Fe-O cleavage) and cytochrome P450 (O-O bond lysis) in similar N4S coordination environments.

2.
Chem Commun (Camb) ; 57(23): 2947-2950, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33621306

RESUMO

A mononuclear oxoiron(iv) complex 1-trans bearing two equatorial sulfur ligations is synthesized and characterized as an active-site model of the elusive sulfur-ligated FeIV[double bond, length as m-dash]O intermediates in non-heme iron oxygenases. The introduction of sulfur ligands weakens the Fe[double bond, length as m-dash]O bond and enhances the oxidative reactivity of the FeIV[double bond, length as m-dash]O unit with a diminished deuterium kinetic isotope effect, thereby providing a compelling rationale for nature's use of the cis-thiolate ligated oxoiron(iv) motif in key metabolic transformations.

3.
Elife ; 72018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30198842

RESUMO

Evolutionary transitions from indirect to direct development involve changes in both maternal and zygotic genetic factors, with distinctive population-genetic implications, but empirical data on the genetics of such transitions are lacking. The polychaete Streblospio benedicti provides an opportunity to dissect a major transition in developmental mode using forward genetics. Females in this species produce either small eggs that develop into planktonic larvae or large eggs that develop into benthic juveniles. We identify large-effect loci that act maternally to influence larval size and independent, unlinked large-effect loci that act zygotically to affect discrete aspects of larval morphology. The likely fitness of zygotic alleles depends on their maternal background, creating a positive frequency-dependence that may homogenize local populations. Developmental and population genetics interact to shape larval evolution.


Assuntos
Evolução Biológica , Desenvolvimento Embrionário/genética , Poliquetos/crescimento & desenvolvimento , Zigoto/crescimento & desenvolvimento , Animais , Embrião não Mamífero , Genética Populacional , Larva/genética , Larva/crescimento & desenvolvimento , Fenótipo , Poliquetos/genética , Zigoto/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA