Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Alzheimers Dement ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940656

RESUMO

BACKGROUND: This study investigated the potential of phosphorylated plasma Tau217 ratio (pTau217R) and plasma amyloid beta (Aß) 42/Aß40 in predicting brain amyloid levels measured by positron emission tomography (PET) Centiloid (CL) for Alzheimer's disease (AD) staging and screening. METHODS: Quantification of plasma pTau217R and Aß42/Aß40 employed immunoprecipitation-mass spectrometry. CL prediction models were developed on a cohort of 904 cognitively unimpaired, preclinical and early AD subjects and validated on two independent cohorts. RESULTS: Models integrating pTau217R outperformed Aß42/Aß40 alone, predicting amyloid levels up to 89.1 CL. High area under the receiver operating characteristic curve (AUROC) values (89.3% to 94.7%) were observed across a broad CL range (15 to 90). Utilizing pTau217R-based models for low amyloid levels reduced PET scans by 70.5% to 78.6%. DISCUSSION: pTau217R effectively predicts brain amyloid levels, surpassing cerebrospinal fluid Aß42/Aß40's range. Combining it with plasma Aß42/Aß40 enhances sensitivity for low amyloid detection, reducing unnecessary PET scans and expanding clinical utility. HIGHLIGHTS: Phosphorylated plasma Tau217 ratio (pTau217R) effectively predicts amyloid-PET Centiloid (CL) across a broad spectrum. Integrating pTau217R with Aß42/Aß40 extends the CL prediction upper limit to 89.1 CL. Combined model predicts amyloid status with high accuracy, especially in cognitively unimpaired individuals. This model identifies subjects above or below various CL thresholds with high accuracy. pTau217R-based models significantly reduce PET scans by up to 78.6% for screening out individuals with no/low amyloid.

2.
Alzheimers Dement (Amst) ; 16(3): e12621, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39045143

RESUMO

Abstract: Plasma pTau181, a marker of amyloid and tau burden, was evaluated as a prognostic predictor of clinical decline and Alzheimer's disease (AD) progression of amyloid-positive (Aß+) patients with mild cognitive impairment (MCI). The training cohort for constructing the Bayesian prediction models comprised 135 Aß+ MCI clinical trial placebo subjects. Performance was evaluated in two validation cohorts. An 18-month ≥1 increase in the Clinical Dementia Rating Sum of Boxes was the clinical decline criterion. Baseline plasma pTau181 concentration matched clinical assessments' prediction performance. Adding pTau181 to clinical assessments significantly improved the prediction of an 18-month clinical decline and the 36-month progression from Aß+ MCI to AD. The area under the receiver operating characteristic curve for the latter increased from 71.8% to 79%, and the hazard ratio for time-to-progression improved from 2.26 to 3.11 (p < 0.0001). Baseline plasma pTau181 has the potential for identifying Aß+ MCI subjects with faster clinical decline over time. Highlights: This study assessed pTau181 as a prognostic predictor of 18-month clinical decline and extended progression to Alzheimer's disease (AD) in amyloid-positive patients with mild cognitive impairment (Aß+ MCI).The research findings underscore the promise of baseline plasma pTau181 as a screening tool for identifying Aß+ MCI individuals with accelerated clinical decline within a standard 18-month clinical trial period. The predictive accuracy is notably enhanced when combined with clinical assessments.Similar positive outcomes were noted in forecasting the extended progression of Aß+ MCI subjects to AD.

3.
MAbs ; 16(1): 2324801, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38441119

RESUMO

Biologics have revolutionized disease management in many therapeutic areas by addressing unmet medical needs and overcoming resistance to standard-of-care treatment in numerous patients. However, the development of unwanted immune responses directed against these drugs, humoral and/or cellular, can hinder their efficacy and have safety consequences with various degrees of severity. Health authorities ask that a thorough immunogenicity risk assessment be conducted during drug development to incorporate an appropriate monitoring and mitigation plan in clinical studies. With the rapid diversification and complexification of biologics, which today include modalities such as multi-domain antibodies, cell-based products, AAV delivery vectors, and nucleic acids, developers are faced with the challenge of establishing a risk assessment strategy sometimes in the absence of specific regulatory guidelines. The European Immunogenicity Platform (EIP) Open Symposium on Immunogenicity of Biopharmaceuticals and its one-day training course gives experts and newcomers across academia, industry, and regulatory agencies an opportunity to share experience and knowledge to overcome these challenges. Here, we report the discussions that took place at the EIP's 14th Symposium, held in April 2023. The topics covered included immunogenicity monitoring and clinical relevance, non-clinical immunogenicity risk assessment, regulatory aspects of immunogenicity assessment and reporting, and the challenges associated with new modalities, which were discussed in a dedicated session.


Assuntos
Produtos Biológicos , Humanos , Anticorpos , Desenvolvimento de Medicamentos , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA