Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 258: 119408, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38876417

RESUMO

The use of algae for value-added product and biorefining applications is enchanting attention among researchers in recent years due to its remarkable photosynthetic ability, adaptability, and capacity to accumulate lipids and carbohydrates. Algae biomass, based on its low manufacturing costs, is relatively renewable, sustainable, environmentally friendly and economical in comparison with other species. High production rate of algae provides a unique opportunity for its conversion to biochar with excellent physicochemical properties, viz. high surface area and pore volume, high adsorption capacity, abundant functional groups over surface, etc. Despite several potential algal-biochar, a detailed study on its application for removal of emerging contaminants from wastewater is limited. Therefore, this technical review is being carried out to evaluate the specific elimination of inorganic and organic pollutants from wastewater, with a view to assessing adsorption performances of biochar obtained from various algae species. Species-specific adsorption of emerging pollutants from wastewater have been discussed in the present review. The promising methods like pyrolysis, gasification, dry and wet torrefaction for the production of algae biochar are highlighted. The strategies include chemical and structural modifications of algae biochar for the removal of toxic contaminants have also been considered in the current work. The overall aim of this review is to confer about the synthesis, technological advancements, delineation and application of algae biochar for the treatment of wastewater.


Assuntos
Carvão Vegetal , Águas Residuárias , Poluentes Químicos da Água , Carvão Vegetal/química , Águas Residuárias/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Eliminação de Resíduos Líquidos/métodos , Adsorção , Microalgas/metabolismo , Recuperação e Remediação Ambiental/métodos
2.
Chemosphere ; 336: 139192, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37353172

RESUMO

Tannery wastewater (TWW) has high BOD, COD, TS and variety of pollutants like chromium, formaldehydes, biocides, oils, chlorophenols, detergents and phthalates etc. Besides these pollutants, TWW also rich source of nutrients like nitrogen, phosphorus, carbon and sulphur etc. that can be utilized by microalgae during their growth. Direct disposal of TWW into the environment may lead severe environmental and health threats, therefore it needs to be treated adequately. Microalgae are considered as an efficient microorganisms (fast growing, adaptability and strain robustness, high surface to volume ratio, energy saving) for remediation of wastewaters with simultaneous biomass recovery and generation of value-added products (VAPs) such as biofuels, biohydrogen, biopolymer, biofertilizer, pigments, bioethanol, bioactive compounds, nutraceutical etc. Most microalgae are photosynthetic and use CO2 and light energy to synthesise carbohydrate and reduces the emission of greenhouse gasses. Microalgae are also reported to remove heavy metals and antibiotics from wastewaters by bioaccumulation, biodegradation and biosorption. Microalgal treatment can be an alternative of conventional processes with generation of VAPs. The use of biotechnology in wastewater remediation with simultaneous generation of VAPs is trending. The validation of economic viability and environmental sustainability, life cycle assessment studies and techno-economic analysis is undergoing. Thus, in this review, the characteristics of TWW and microalgae are summarized, which manifest microalgae as potential candidates for wastewater remediation with simultaneous production of VAPs. Further, the treatment mechanisms, various factors (physical, chemical, mechanical and biological etc.) affecting treatment efficiency as well as challenges associated with microalgal remediation are also discussed.


Assuntos
Poluentes Ambientais , Microalgas , Águas Residuárias , Microalgas/metabolismo , Biodegradação Ambiental , Biotecnologia , Poluentes Ambientais/metabolismo , Biomassa , Biocombustíveis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA