Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioresour Technol ; 367: 128305, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36370943

RESUMO

Earthworm-induced microbial enrichment is the key to success in vermitechnology, yet the influence of initial earthworm stocking density on microbial community profiles in vermibeds is unknown. Therefore, vermicomposting of lignocellulosic feedstock was performed with different stocking densities of two earthworms (Eisenia fetida and Eudrilus eugeniae) compared with composting. Eventually, earthworm growth, microbial (activity and community profiles), and physicochemical dynamics were assessed. The earthworm population significantly increased under low stocking, while denser stocking (15/kg) was stressful. The XRD-based crystallinity assessment revealed that comminuting efficiency of Eisenia and Eudrilus was prudent at 7 and 10 worm/kg stockings, respectively. Moreover, the 5 and 7 worm/kg stockings effectively mobilized microbial activity, promoting NPK-mineralization and C-humification balance. Correlation statistics indicated that earthworm stocking density-driven microbial community shift and fatty acid profiles strongly influenced metal removal in vermibeds. Hence, the findings implied that 5-7 worm/kg stockings of earthworms produced high-quality sanitized vermicompost.


Assuntos
Microbiota , Oligoquetos , Animais , Ácidos Graxos , Solo/química , Metais
2.
Environ Sci Pollut Res Int ; 30(48): 105202-105219, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37710064

RESUMO

Knowledge on the mechanism of earthworm-induced removal of polycyclic aromatic hydrocarbons (PAH) in vermicomposting systems and interaction with nutrient mineralization and microbial growth is scarce in literature. Moreover, the PAH accumulation capacity of Eudrilus eugeniae has not been studied. This research, therefore, investigates the apportionment dynamics of 13 PAH compounds in aerobic composting and vermicomposting (Eisenia fetida and E. eugeniae) systems using novel budget equations. The PAH removal efficiency of vermicomposting was significantly higher (2-threefold) than composting with concurrent microbial augmentation (p < 0.01). However, the 4-6 ring compounds reduced more significantly (30-50%) than the 3-ring PAHs (p < 0.01), and E. eugeniae was an equally competitive PAH-accumulator compared to E. fetida. The budget equations revealed that although the bioaccumulation capabilities of earthworms were retarded due to PAH exposure, earthworms facilitated PAH-immobilization in decomposed feedstock. A marked increase in bacterial, fungal, and actinomycetes proliferation in PAH-spiked vermibeds with parallel removal of the PAHs indicated that earthworm-induced microbial enrichment plays a vital role in PAH detoxification during vermicomposting. Correlation analyses strongly implied that earthworm-driven mineralization-humification balancing and microbial enrichment could be the critical mechanism of PAH remediation under vermicomposting.


Assuntos
Compostagem , Oligoquetos , Hidrocarbonetos Policíclicos Aromáticos , Animais , Solo
3.
Sci Total Environ ; 716: 135215, 2020 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31837844

RESUMO

Spent mushroom substrate (SMS) is a recalcitrant lignocellulosic waste. Recycling of SMS through composting has been reported; however, the process is lengthy due to its complex biochemical composition. Although vermitechnology is known for its high efficiency, it has rarely been applied to recycle SMS. In this study, the qualitative value of vermicomposted SMS mediated by three earthworm species (i.e., Eisenia fetida, Eudrilus eugeniae, and Perionyx excavatus) was evaluated on the basis of nutrient availability, microbial activity, phospholipid fatty acid (PLFA) profiles, and seed germination assays. Degradation profiles of the lignocellulosic substrate in the vermireactors were assessed by monitoring the changes in crystallinity and distribution of functional groups using X-ray diffraction (XRD) and Fourier transform infrared spectroscopy, respectively. Total organic carbon decreased by 1.4-3.5 folds with approximately 2.1-2.4 folds increase in nitrogen and phosphorus availability in all vermibeds. Interestingly, pH declined in the Eisenia and Eudrilus systems but increased in the Perionyx-vermibeds. XRD-derived crystallinity index was reduced significantly by 1.37 folds in Perionyx-vermicompost with concurrent microbial enrichment. Further, profuse abundance of vital functional groups (CO, NH, and OH) was clearly observed in the vermicompost with Perionyx followed by that with Eisenia. Moreover, PLFA illustrated significant variations in fatty acid distributions and microbial communities of the three vermicomposting systems. The seed germination assay showed that the germination index and relative root-shoot vigor of Perionyx-vermicompost treated seeds were 1.05-1.30 times greater than those of Eisenia and Eudrilus vermicompost treated ones. The results suggest that SMS degradability was affected by the growth of a healthy microbial community through vermicomposting.


Assuntos
Agaricales , Compostagem , Microbiota , Oligoquetos , Animais , Biomassa , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA