Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nanoscale Horiz ; 8(5): 624-631, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36752198

RESUMO

Molecular spins are emerging platforms for quantum information processing. By chemically tuning their molecular structure, it is possible to prepare a robust environment for electron spins and drive the assembly of a large number of qubits in atomically precise spin-architectures. The main challenges in the integration of molecular qubits into solid-state devices are (i) minimizing the interaction with the supporting substrate to suppress quantum decoherence and (ii) controlling the spatial distribution of the spins at the nanometer scale to tailor the coupling among qubits. Herein, we provide a nanofabrication method for the realization of a 2D patterned array of individually addressable Vanadyl Phthalocyanine (VOPc) spin qubits. The molecular nanoarchitecture is crafted on top of a diamagnetic monolayer of Titanyl Phthalocyanine (TiOPc) that electronically decouples the electronic spin of VOPc from the underlying Ag(100) substrate. The isostructural TiOPc interlayer also serves as a template to regulate the spacing between VOPc spin qubits on a scale of a few nanometers, as demonstrated using scanning tunneling microscopy, X-ray circular dichroism, and density functional theory. The long-range molecular ordering is due to a combination of charge transfer from the metallic substrate and strain in the TiOPc interlayer, which is attained without altering the pristine VOPc spin characteristics. Our results pave a viable route towards the future integration of molecular spin qubits into solid-state devices.

2.
Adv Mater ; 32(7): e1904327, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31880023

RESUMO

Over the past decade the family of chiral noncollinear spin textures has continued to expand with the observation in metallic compounds of Bloch-like skyrmions in several B20 compounds, and antiskyrmions in a tetragonal inverse Heusler. Néel like skyrmions in bulk crystals with broken inversion symmetry have recently been seen in two distinct nonmetallic compounds, GaV4 S8 and VOSe2 O5 at low temperatures (below ≈13 K) only. Here, the first observation of bulk Néel skyrmions in a metallic compound PtMnGa and, moreover, at high temperatures up to ≈220 K is reported. Lorentz transmission electron microscopy reveals the chiral Néel character of the skyrmions. A strong variation is reported of the size of the skyrmions on the thickness of the lamella in which they are confined, varying by a factor of 7 as the thickness is varied from ≈90 nm to ≈4 µm. Moreover, the skyrmions are highly robust to in-plane magnetic fields and can be stabilized in a zero magnetic field using suitable field-cooling protocols over a very broad temperature range to as low as 5 K. These properties, together with the possibility of manipulating skyrmions in metallic PtMnGa via current induced spin-orbit torques, make them extremely exciting for future spintronic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA