Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Eur Radiol ; 33(7): 5107-5117, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36754891

RESUMO

OBJECTIVES: To study the impact of COVID-19 on chest CT practice during the different waves using Dose Archiving and Communication System (DACS). METHODS: Retrospective study including data from 86,136 chest CT acquisitions from 27 radiology centers (15 private; 12 public) between January 1, 2020, and October 13, 2021, using a centralized DACS. Daily chest CT activity and dosimetry information such as dose length product (DLP), computed tomography dose index (CTDI), and acquisition parameters were collected. Pandemic indicators (daily tests performed, incidence, and hospital admissions) and vaccination rates were collected from a governmental open-data platform. Descriptive statistics and correlation analysis were performed. RESULTS: For the first two waves, strong positive and significant correlations were found between all pandemic indicators and total chest CT activity, as high as R = 0.7984 between daily chest CT activity and hospital admissions during the second wave (p < 0.0001). We found differences between public hospitals and private imaging centers during the first wave, with private centers demonstrating a negative correlation between daily chest CT activity and hospital admissions (-0.2819, p = 0.0019). Throughout the third wave, simultaneously with the rise of vaccination rates, total chest CT activity decreased with significant negative correlations with pandemic indicators, such as R = -0.7939 between daily chest CTs and daily incidence (p < 0.0001). Finally, less than 5% of all analyzed chest CTs could be considered as low dose. CONCLUSIONS: During the first waves, COVID-19 had a strong impact on chest CT practice which was lost with the arrival of vaccination. Low-dose protocols remained marginal. KEY POINTS: • There was a significant correlation between the number of daily chest CTs and pandemic indicators throughout the first two waves. It was lost during the third wave due to vaccination arrival. • Differences were observed between public and private centers, especially during the first wave, less during the second, and were lost during the third. • During the first three waves of COVID-19 pandemic, few CT helical acquisitions could be considered as low dose with only 3.8% of the acquisitions according to CTDIvol and 4.3% according to DLP.


Assuntos
COVID-19 , Radiologia , Humanos , Doses de Radiação , COVID-19/epidemiologia , COVID-19/prevenção & controle , Estudos Retrospectivos , Pandemias/prevenção & controle , Comunicação
2.
Int J Mol Sci ; 23(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36142346

RESUMO

Tissue overreactions (OR), whether called adverse effects, radiotoxicity, or radiosensitivity reactions, may occur during or after anti-cancer radiotherapy (RT). They represent a medical, economic, and societal issue and raise the question of individual response to radiation. To predict and prevent them are among the major tasks of radiobiologists. To this aim, radiobiologists have developed a number of predictive assays involving different cellular models and endpoints. To date, while no consensus has been reached to consider one assay as the best predictor of the OR occurrence and severity, radiation oncologists have proposed consensual scales to quantify OR in six different grades of severity, whatever the organ/tissue concerned and their early/late features. This is notably the case with the Common Terminology Criteria for Adverse Events (CTCAE). Few radiobiological studies have used the CTCAE scale as a clinical endpoint to evaluate the statistical robustness of the molecular and cellular predictive assays in the largest range of human radiosensitivity. Here, by using 200 untransformed skin fibroblast cell lines derived from RT-treated cancer patients eliciting OR in the six CTCAE grades range, correlations between CTCAE grades and the major molecular and cellular endpoints proposed to predict OR (namely, cell survival at 2 Gy (SF2), yields of micronuclei, recognized and unrepaired DSBs assessed by immunofluorescence with γH2AX and pATM markers) were examined. To our knowledge, this was the first time that the major radiosensitivity endpoints were compared together with the same cohort and irradiation conditions. Both SF2 and the maximal number of pATM foci reached after 2 Gy appear to be the best predictors of the OR, whatever the CTCAE grades range. All these major radiosensitivity endpoints are mathematically linked in a single mechanistic model of individual response to radiation in which the ATM kinase plays a major role.


Assuntos
Proteínas Quinases , Tolerância a Radiação , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Biomarcadores/metabolismo , Sobrevivência Celular/efeitos da radiação , Reparo do DNA , Fibroblastos/metabolismo , Humanos , Proteínas Quinases/metabolismo , Tolerância a Radiação/efeitos da radiação
3.
Sensors (Basel) ; 22(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35009632

RESUMO

For technical and radioprotection reasons, it has become essential to develop new dosimetric tools adapted to the specificities of computed tomography (CT) to ensure precise and efficient dosimetry since the current standards are not suitable for clinical use and for new CT technological evolution. Thanks to its many advantages, plastic scintillating fibers (PSF) is a good candidate for more accurate and personalized real-time dosimetry in computed tomography, and the company Fibermetrix has developed a new device named IVISCAN® based on this technology. In this study, we evaluated performances of IVISCAN® and associated uncertainties in terms of dose-rate dependence, angular dependence, stability with cumulative dose, repeatability, energy dependence, length dependence, and special uniformity in reference and clinical computed tomography beam qualities. For repeatability, the standard deviation is less than 0.039%, and the absolute uncertainty of repeatability lies between 0.017% and 0.025%. The deviation between IVISCAN® and the reference regarding energy dependence is less than 1.88% in clinical use. Dose rate dependence results show a maximum deviation under ±2%. Angular dependence standard deviation σ is 0.8%, and the absolute uncertainty was 1.6%. We observed 1% of variation every 50 Gy steps up to a cumulative dose of 500 Gy. Probe response was found to be independent of the PSF length with a maximum deviation ΔDsize < 2.7% between the IVISCAN® probe and the 1 cm PSF probe. The presented results demonstrated that IVISCAN® performances are in accordance with metrology references and the international standard IEC61674 relative to dosemeters used in X-ray diagnostic imaging and then make it an ideal candidate for real-time dosimetry in CT applications.


Assuntos
Radiometria , Tomografia Computadorizada por Raios X , Plásticos
4.
Int J Mol Sci ; 20(21)2019 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-31717816

RESUMO

Our understanding of the molecular and cellular response to ionizing radiation (IR) has progressed considerably. This is notably the case for the repair and signaling of DNA double-strand breaks (DSB) that, if unrepaired, can result in cell lethality, or if misrepaired, can cause cancer. However, through the different protocols, techniques, and cellular models used during the last four decades, the DSB repair kinetics and the relationship between cellular radiosensitivity and unrepaired DSB has varied drastically, moving from all-or-none phenomena to very complex mechanistic models. To date, personalized medicine has required a reliable evaluation of the IR-induced risks that have become a medical, scientific, and societal issue. However, the molecular bases of the individual response to IR are still unclear: there is a gap between the moderate radiosensitivity frequently observed in clinic but poorly investigated in the publications and the hyper-radiosensitivity of rare but well-characterized genetic diseases frequently cited in the mechanistic models. This paper makes a comprehensive review of semantic issues, correlations between cellular radiosensitivity and unrepaired DSB, shapes of DSB repair curves, and DSB repair biomarkers in order to propose a new vision of the individual response to IR that would be more coherent with clinical reality.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Tolerância a Radiação/genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Biomarcadores/metabolismo , Citogenética/história , Reparo do DNA por Junção de Extremidades , Histonas/metabolismo , História do Século XX , História do Século XXI , Humanos , Radiação Ionizante , Pesquisa/história
5.
J Theor Biol ; 333: 135-45, 2013 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-23735818

RESUMO

Immunofluorescence with antibodies against DNA damage repair and signaling protein is revolutionarising the estimation of the genotoxic risk. Indeed, a number of stress response proteins relocalize in nucleus as identifiable foci whose number, pattern and appearance/disappearance rate depend on several parameters such as the stress nature, dose, time and individual factor. Few authors proposed biomathematical tools to describe them in a unified formula that would be relevant for all the relocalizable proteins. Based on our two previous reports in this Journal (Foray et al., 2005; Gastaldo et al., 2008), we considered that foci response to stress is composed of a recognition and a repair phase, both described by an inverse power function provided from a Euler's Gamma distribution. The resulting unified formula called "Bodgi's function" is able to describe appearance/disappearance kinetics of nuclear foci after any condition of genotoxic stress. By applying the Bodgi's formula to DNA damage repair data from 45 patients treated with radiotherapy, we deduced a classification of human radiosensitivity based on objective molecular criteria, notably like the number of unrepaired DNA double-strand breaks and the radiation-induced nucleo-shuttling of the ATM kinase.


Assuntos
Dano ao DNA , Reparo do DNA , Fibroblastos/metabolismo , Raios gama/efeitos adversos , Modelos Biológicos , Tolerância a Radiação/efeitos da radiação , Anticorpos Antinucleares/química , Fibroblastos/patologia , Humanos , Cinética , Transporte Proteico/efeitos da radiação , Radioterapia/efeitos adversos , Raios X/efeitos adversos
6.
Cells ; 12(13)2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37443782

RESUMO

Alzheimer's disease (AD) is the most common neurodegenerative dementia, for which the molecular origins, genetic predisposition and therapeutic approach are still debated. In the 1980s, cells from AD patients were reported to be sensitive to ionizing radiation. In order to examine the molecular basis of this radiosensitivity, the ATM-dependent DNA double-strand breaks (DSB) signaling and repair were investigated by applying an approach based on the radiation-induced ataxia telangiectasia-mutated (ATM) protein nucleoshuttling (RIANS) model. Early after irradiation, all ten AD fibroblast cell lines tested showed impaired DSB recognition and delayed RIANS. AD fibroblasts specifically showed spontaneous perinuclear localization of phosphorylated ATM (pATM) forms. To our knowledge, such observation has never been reported before, and by considering the role of the ATM kinase in the stress response, it may introduce a novel interpretation of accelerated aging. Our data and a mathematical approach through a brand-new model suggest that, in response to a progressive and cumulative stress, cytoplasmic ATM monomers phosphorylate the APOE protein (pAPOE) close to the nuclear membrane and aggregate around the nucleus, preventing their entry in the nucleus and thus the recognition and repair of spontaneous DSB, which contributes to the aging process. Our findings suggest that pATM and/or pAPOE may serve as biomarkers for an early reliable diagnosis of AD on any fibroblast sample.


Assuntos
Doença de Alzheimer , Reparo do DNA , Humanos , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Quebras de DNA de Cadeia Dupla , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/metabolismo , Núcleo Celular/metabolismo
7.
Eur Radiol Exp ; 6(1): 17, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35385987

RESUMO

BACKGROUND: While computed tomography (CT) exams are the major cause of medical exposure to ionising radiation, the radiation-induced risks must be documented. We investigated the impact of the cellular models and individual factor on the deoxyribonucleic acid double-strand breaks (DSB) recognition and repair in human skin fibroblasts and brain astrocytes exposed to current head CT scan conditions. METHOD: Nine human primary fibroblasts and four human astrocyte cell lines with different levels of radiosensitivity/susceptibility were exposed to a standard head CT scan exam using adapted phantoms. Cells were exposed to a single-helical (37.4 mGy) and double-helical (37.4 mGy + 5 min + 37.4 mGy) examination. DSB signalling and repair was assessed through anti-γH2AX and anti-pATM immunofluorescence. RESULTS: Head CT scan induced a significant number of γH2AX and pATM foci. The kinetics of both biomarkers were found strongly dependent on the individual factor. Particularly, in cells from radiosensitive/susceptible patients, DSB may be significantly less recognised and/or repaired, whatever the CT scan exposure conditions. Similar conclusions were reached with astrocytes. CONCLUSIONS: Our results highlight the importance of both individual and tissue factors in the recognition and repair of DSB after current head CT scan exams. Further investigations are needed to better define the radiosensitivity/susceptibility of individual humans.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Fibroblastos/metabolismo , Humanos , Tomografia Computadorizada por Raios X
8.
Eur Radiol Exp ; 6(1): 14, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35301607

RESUMO

BACKGROUND: While computed tomography (CT) exams are the major cause of medical exposure to ionising radiation, there is increasing evidence that the potential radiation-induced risks must be documented. We investigated the impact of cellular models and individual factor on the deoxyribonucleic acid double-strand breaks (DSB) recognition and repair in human fibroblasts and mammary epithelial cells exposed to current chest CT scan conditions. METHOD: Twelve human primary fibroblasts and four primary human mammary epithelial cell lines with different levels of radiosensitivity/susceptibility were exposed to a standard chest CT scan exam using adapted phantoms. Cells were exposed to a single helical irradiation (14.4 mGy) or to a topogram followed, after 1 min, by one single helical examination (1.1 mGy + 14.4 mGy). DSB signalling and repair was assessed through anti-γH2AX and anti-pATM immunofluorescence. RESULTS: Chest CT scan induced a significant number of γH2AX and pATM foci. The kinetics of both biomarkers were found strongly dependent on the individual factor. The topogram may also influence the biological response of radiosensitive/susceptible fibroblasts to irradiation. Altogether, our findings show that a chest CT scan exam may result in 2 to 3 times more unrepaired DSB in cells from radiosensitive/susceptible patients. CONCLUSIONS: Both individual and tissue factors in the recognition and repair of DSB after current CT scan exams are important. Further investigations are needed to better define the radiosensitivity/susceptibility of individual humans.


Assuntos
Quebras de DNA de Cadeia Dupla , Histonas , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Reparo do DNA , Histonas/metabolismo , Histonas/efeitos da radiação , Humanos , Tomografia Computadorizada por Raios X
9.
Mol Neurobiol ; 59(1): 556-573, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34727321

RESUMO

Neurofibromatosis type 1 (NF1) is a disease characterized by high occurrence of benign and malignant brain tumours and caused by mutations of the neurofibromin protein. While there is an increasing evidence that NF1 is associated with radiosensitivity and radiosusceptibility, few studies have dealt with the molecular and cellular radiation response of cells from individuals with NF1. Here, we examined the ATM-dependent signalling and repair pathways of the DNA double-strand breaks (DSB), the key-damage induced by ionizing radiation, in skin fibroblast cell lines from 43 individuals with NF1. Ten minutes after X-rays irradiation, quiescent NF1 fibroblasts showed abnormally low rate of recognized DSB reflected by a low yield of nuclear foci formed by phosphorylated H2AX histones. Irradiated NF1 fibroblasts also presented a delayed radiation-induced nucleoshuttling of the ATM kinase (RIANS), potentially due to a specific binding of ATM to the mutated neurofibromin in cytoplasm. Lastly, NF1 fibroblasts showed abnormally high MRE11 nuclease activity suggesting a high genomic instability after irradiation. A combination of bisphosphonates and statins complemented these impairments by accelerating the RIANS, increasing the yield of recognized DSB and reducing genomic instability. Data from NF1 fibroblasts exposed to radiation in radiotherapy and CT scan conditions confirmed that NF1 belongs to the group of syndromes associated with radiosensitivity and radiosusceptibility.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Sobrevivência Celular/efeitos da radiação , Reparo do DNA/efeitos da radiação , Difosfonatos/farmacologia , Fibroblastos/efeitos da radiação , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Neurofibromatose 1/radioterapia , Radiação Ionizante , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Reparo do DNA/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Neurofibromatose 1/metabolismo
10.
Int J Radiat Biol ; 97(3): 317-328, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33320757

RESUMO

PURPOSE: MacCune-Albright syndrome (MAS) is a rare autosomal dominant osteo-hormonal disorder. MAS is characterized by a severe form of polyostotic fibrous dysplasia, 'café-au-lait' pigmentation of the skin and multiple endocrinopathies. MAS was shown to be caused by mosaic missense somatic mutations in the GNAS gene coding for the alpha-subunit of the stimulatory G-protein. MAS is also associated with radiation-induced malignant tumors, like osteosarcoma, fibrosarcoma and chondrosarcoma but their origin remains misunderstood. In parallel, bisphosphonates treatment was shown to improve the MAS patients' outcome, notably by increasing bone density but, again, the molecular mechanisms supporting these observations remain misunderstood. MATERIALS AND METHODS: Here, by using fibroblast and osteoblast cell lines derived from 2 MAS patients, the major radiobiological features of MAS were investigated. Notably, the clonogenic cell survival, the micronuclei and the γH2AX, pATM and MRE11 immunofluorescence assays were applied to MAS cells. RESULTS: It appears that cells from the 2 MAS patients are associated with a moderate but significant radiosensitivity, a delayed radiation-induced nucleoshuttling of the ATM kinase likely caused by its sequestration in cytoplasm, suggesting impaired DNA double-strand breaks (DSB) repair and signaling in both fibroblasts and osteoblasts. Such delay may be partially corrected by using bisphosphonates combined with statins, which renders cells more radioresistant. CONCLUSIONS: Our findings represent the first radiobiological characterization of fibroblasts and osteoblasts providing from MAS patients. Although the number of studied cases is reduced, our findings suggest that the MAS cells tested belong to the group of syndromes associated with moderate but significant radiosensitivity. Further investigations are however required to secure the clinical transfer of the combination of bisphosphonates and statins, to reduce the disease progression and to better evaluate the potential risks linked to radiation exposure.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/fisiologia , Difosfonatos/administração & dosagem , Displasia Fibrosa Poliostótica/tratamento farmacológico , Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , Tolerância a Radiação , Adulto , Linhagem Celular , Reparo do DNA , Feminino , Fibroblastos/efeitos da radiação , Displasia Fibrosa Poliostótica/genética , Humanos , Proteína Homóloga a MRE11/análise , Masculino , Osteoblastos/efeitos da radiação
11.
Curr Eye Res ; 46(4): 546-557, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32862699

RESUMO

PURPOSE/AIM OF THE STUDY: Retinoblastoma (Rb) is a rare form of pediatric cancer that develops from retina cells. Bilateral and some unilateral forms of Rb are associated with heterozygous germline mutations of the (retinoblastoma 1) RB1 gene. RB1 mutations are also associated with a significant risk of secondary malignancy like head and neck tumors. Hence, to date, even if Rb patients are less subjected to radiotherapy to treat their primary ocular tumors, their healthy tissues may be exposed to significant doses of ionizing radiation during the treatment against their secondary malignancies with a significant risk of adverse tissue reactions (radiosensitivity) and/or radiation-induced cancer (radiosusceptibility). However, the biological role of the Rb protein in response to radiation remains misunderstood. Since the ataxia telangiectasia mutated (ATM) protein is a key protein of radiation response and since untransformed skin fibroblasts are a current model to quantify cellular radiosensitivity, we investigated here for the first time the functionality of the ATM-dependent signaling and repair pathway of the radiation-induced DNA double-strand breaks (DSB) in irradiated skin fibroblasts derived from Rb patients. MATERIALS AND METHODS: The major biomarkers of the DSB repair and signaling, namely clonogenic cell survival, micronuclei, nuclear foci of the phosphorylated forms of the X variant of the H2A histone (γH2AX), the phosphorylated forms of the ATM protein (pATM) and the meiotic recombination 11 nuclease (MRE11) were assessed in untransformed skin fibroblasts derived from three Rb patients. RESULTS: Skin fibroblasts from Rb patients showed significant cellular radiosensitivity, incomplete DSB recognition, delay in the ATM nucleo-shuttling and exacerbated MRE11 nuclease activity. Treatment with statin and bisphosphonates led to significant complementation of these impairments. CONCLUSIONS: Our findings strongly suggest the involvement of the ATM kinase in the radiosensitivity/radiosusceptibility phenotype observed in Rb cases.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Fibroblastos/efeitos da radiação , Tolerância a Radiação/fisiologia , Neoplasias da Retina/patologia , Retinoblastoma/patologia , Pele/efeitos da radiação , Anticolesterolemiantes/uso terapêutico , Conservadores da Densidade Óssea/uso terapêutico , Linhagem Celular , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Combinação de Medicamentos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Pravastatina/uso terapêutico , Doses de Radiação , Proteínas de Ligação a Retinoblastoma/metabolismo , Pele/efeitos dos fármacos , Pele/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Raios X , Ácido Zoledrônico/uso terapêutico
12.
Biomolecules ; 11(10)2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34680095

RESUMO

Despite a considerable amount of data, the molecular and cellular bases of the toxicity due to metal exposure remain unknown. Recent mechanistic models from radiobiology have emerged, pointing out that the radiation-induced nucleo-shuttling of the ATM protein (RIANS) initiates the recognition and the repair of DNA double-strand breaks (DSB) and the final response to genotoxic stress. In order to document the role of ATM-dependent DSB repair and signalling after metal exposure, we applied twelve different metal species representing nine elements (Al, Cu, Zn Ni, Pd, Cd, Pb, Cr, and Fe) to human skin, mammary, and brain cells. Our findings suggest that metals may directly or indirectly induce DSB at a rate that depends on the metal properties and concentration, and tissue type. At specific metal concentration ranges, the nucleo-shuttling of ATM can be delayed which impairs DSB recognition and repair and contributes to toxicity and carcinogenicity. Interestingly, as observed after low doses of ionizing radiation, some phenomena equivalent to the biological response observed at high metal concentrations may occur at lower concentrations. A general mechanistic model of the biological response to metal exposure based on the nucleo-shuttling of ATM is proposed to describe the metal-induced stress response and to define quantitative endpoints for toxicity and carcinogenicity.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/química , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Metais/química , Alumínio/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia/efeitos dos fármacos , Proteínas Mutadas de Ataxia Telangiectasia/efeitos da radiação , Cádmio/farmacologia , Cromo/farmacologia , Cobre/farmacologia , Reparo do DNA/efeitos da radiação , Humanos , Ferro/farmacologia , Chumbo/farmacologia , Metais/farmacologia , Metais/toxicidade , Níquel/farmacologia , Paládio/farmacologia , Zinco/farmacologia
13.
Dose Response ; 18(2): 1559325820913784, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32425719

RESUMO

Hormesis is a low-dose phenomenon that has been reported to occur, to different extents, in animals, plants, and microorganisms. However, a review of the literature shows that only a few reports describe it in humans. Also, the diversity of experimental protocols and cellular models used makes deciphering the mechanisms of hormesis difficult. In humans, hormesis mostly appears in the 20 to 75 mGy dose range and in nontransformed, radioresistant cells. In a previous paper by Devic et al, a biological interpretation of the adaptive response (AR) phenomenon was proposed using our model that is based on the radiation-induced nucleoshuttling of the ATM protein (the RIANS model). Here, we showed that the 20 to 75 mGy dose range corresponds to a maximum amount of ATM monomers diffusing into the nucleus, while no DNA double-strand breaks is produced by radiation. These ATM monomers are suggested to help in recognizing and repairing spontaneous DNA breaks accumulated in cells and contribute to reductions in genomic instability and aging. The RIANS model also permitted the biological interpretation of hypersensitivity to low doses (HRS)-another low-dose phenomenon. Hence, for the first time to our knowledge, hormesis, AR, and HRS can be explained using the same unified molecular model.

14.
Int J Radiat Biol ; 96(3): 394-410, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31738647

RESUMO

Purpose: Xeroderma Pigmentosum (XP) is a rare, recessive genetic disease associated with photosensitivity, skin cancer proneness, neurological abnormalities and impaired nucleotide excision repair of the UV-induced DNA damage. Less frequently, XP can be associated with sensitivity to ionizing radiation (IR). Here, a complete radiobiological characterization was performed on a panel of fibroblasts derived from XP-group D patients (XPD).Materials and methods: Cellular radiosensitivity and the functionality of the recognition and repair of chromosome breaks and DNA double-strand breaks (DSB) was evaluated by different techniques including clonogenic cell survival, micronuclei, premature chromosome condensation, pulsed-field gel electrophoresis, chromatin decondensation and immunofluorescence assays. Quantitative correlations between each endpoint were analyzed systematically.Results: Among the seven fibroblast cell lines tested, those derived from three non-relative patients holding the p.[Arg683Trp];[Arg616Pro] XPD mutations showed significant cellular radiosensitivity, high yield of residual micronuclei, incomplete DSB recognition, DSB and chromosome repair defects, impaired ATM, MRE11 relocalization, significant chromatin decondensation. Interestingly, XPD transduction and treatment with statins and bisphosphonates known to accelerate the radiation-induced ATM nucleoshuttling led to significant complementation of these impairments.Conclusions: Our findings suggest that some subsets of XPD patients may be at risk of radiosensitivity reactions and treatment with statins and bisphosphonates may be an interesting approach of radioprotection countermeasure. Different mechanistic models were discussed to better understand the potential specificity of the p.[Arg683Trp];[Arg616Pro] XPD mutations.


Assuntos
Transporte Ativo do Núcleo Celular , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Mutação , Proteína Grupo D do Xeroderma Pigmentoso/genética , Xeroderma Pigmentoso/genética , Linhagem Celular , Sobrevivência Celular , Cromatina/metabolismo , Quebras de DNA de Cadeia Dupla , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Proteína Homóloga a MRE11/metabolismo , Testes para Micronúcleos , Tolerância a Radiação , Radiação Ionizante , Raios Ultravioleta , Raios X
15.
Int J Radiat Oncol Biol Phys ; 103(3): 709-718, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30342967

RESUMO

PURPOSE: Linear energy transfer (LET) plays an important role in radiation response. Recently, the radiation-induced nucleo-shuttling of ATM from cytoplasm to the nucleus was shown to be a major event of the radiation response that permits a normal DNA double-strand break (DSB) recognition and repair. Here, we aimed to verify the relevance of the ATM nucleo-shuttling model for high-LET particles and various radiation types. METHODS AND MATERIALS: ATM- and H2AX-immunofluorescence was used to assess the number of recognized and unrepaired DSB in quiescent fibroblast cell lines exposed to x-rays, γ-rays, 9- and 12-MeV electrons, 3- and 65-MeV protons and 75-MeV/u carbon ions. RESULTS: The rate of radiation-induced ATM nucleo-shuttling was found to be specific to each radiation type tested. By increasing the permeability of the nuclear membrane with statin and bisphosphonates, 2 fibroblast cell lines exposed to high-LET particles were shown to be protected by an accelerated ATM nucleo-shuttling. CONCLUSIONS: Our findings are in agreement with the conclusion that LET and the radiation/particle type influence the formation of ATM monomers in cytoplasm that are required for DSB recognition. A striking analogy was established between the DSB repair kinetics of radioresistant cells exposed to high-LET particles and that of several radiosensitive cells exposed to low-LET radiation. Our data show that the nucleo-shuttling of ATM provides crucial elements to predict radiation response in human quiescent cells, whatever the LET value and their radiosensitivity.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Transferência Linear de Energia , Tolerância a Radiação , Proteínas Mutadas de Ataxia Telangiectasia/genética , Carbono/química , Linhagem Celular , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Sobrevivência Celular , Dano ao DNA , Fibroblastos/efeitos da radiação , Raios gama , Histonas/metabolismo , Humanos , Íons , Cinética , Microscopia de Fluorescência , Permeabilidade , Prótons , Radiometria
16.
Dose Response ; 16(3): 1559325818789836, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30093841

RESUMO

The adaptive response (AR) phenomenon generally describes a protective effect caused by a "priming" low dose (dAR) delivered after a period of time (ΔtAR) before a higher "challenging" dose (DAR). The AR is currently observed in human cells if dAR, ΔtAR, and DAR belong to (0.001-0.5 Gy), (2-24 hours), (0.1-5 Gy), respectively. In order to investigate the molecular mechanisms specific to AR in human cells, we have systematically reviewed the experimental AR protocols, the cellular models, and the biological endpoints used from the 1980s. The AR appears to be preferentially observed in radiosensitive cells and is strongly dependent on individual radiosensitivity. To date, the model of the nucleo-shuttling of the ATM protein provides a relevant mechanistic explanation of the AR molecular and cellular events. Indeed, the priming dose dAR may result in the diffusion of a significant amount of active ATM monomers in the nucleus. These ATM monomers, added to those induced directly by the challenging dose DAR, may increase the efficiency of the response to DAR by a better ATM-dependent DNA damage recognition. Such mechanistic model would also explain why AR is not observed in radioresistant or hyperradiosensitive cells. Further investigations at low dose are needed to consolidate our hypotheses.

17.
Eur Radiol Exp ; 2: 21, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30148253

RESUMO

Iodine-containing contrast media (ICM) are extensively used to improve image quality and information content in x-ray-based examinations, particularly in computed tomography (CT). In parallel, there is increasing evidence that the use of ICM during CT sessions is associated with deoxyribonucleic acid (DNA) breaks that may influence the estimation of the risks linked to x-ray exposure. Why has iodine been preferred to any other heavy elements to enhance contrast in radiodiagnostics? How to understand such DNA breaks effect? We searched for the answers in the early times of x-ray medical use. It appeared that the maximal ratio between the relative iodine and water mass energy absorption coefficients is reached in the range of 40-60 keV, which defines the energy range in which the dose is preferentially absorbed by ICM. This range does not correspond to the K-edge of iodine but to that of tungsten, the major component of the x-ray tube anode of CT scanners. At such energy, radiolysis of the ICM produces sodium or potassium iodide that prevents a normal DNA breaks repair and influences the individual response to x-ray low-dose. Both contrast enhancement and DNA breaks effect may therefore be caused by tungsten of the anodes of x-ray tubes.

18.
Int J Radiat Oncol Biol Phys ; 100(2): 353-360, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29353653

RESUMO

PURPOSE: To examine the possibility of predicting clinical radiosensitivity by quantifying the nuclear forms of autophosphorylated ATM protein (pATM) via a specific enzyme-linked immunosorbent assay (ELISA). METHODS AND MATERIALS: This study was performed on 30 skin fibroblasts from 9 radioresistant patients and 21 patients with adverse tissue reaction events. Patients were divided into 2 groups: radioresistant (toxicity grade <2) and radiosensitive (toxicity grade ≥2). The quantity of nuclear pATM molecules was assessed by the ELISA method at 10 minutes and 1 hour after 2 Gy and compared with pATM immunofluorescence data. RESULTS: The pATM ELISA data were in quantitative agreement with the immunofluorescence data. A receiver operating characteristic analysis was applied first to 2 data sets (a training set [n=14] and a validating [n=16] set) and thereafter to all the data with a 2-fold cross-validation method. The assay showed an area under the curve value higher than 0.8, a sensitivity of 0.8, and a specificity ranging from 0.75 to 1, which strongly documents the predictive power of the pATM ELISA. CONCLUSION: This study showed that the assessment of nuclear pATM quantity after 2 Gy via an ELISA technique can be the basis of a predictive assay with the highest statistical performance among the available predictive approaches.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Tolerância a Radiação , Linhagem Celular , Ensaio de Imunoadsorção Enzimática , Fibroblastos/efeitos da radiação , Humanos , Fosforilação
19.
Mol Neurobiol ; 55(6): 4973-4983, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28786016

RESUMO

The tuberous sclerosis complex (TSC) syndrome is associated with numerous cutaneous pathologies (notably on the face), epilepsy, intellectual disability and developmental retardation and, overall, high occurrence of benign tumors in several organs, like angiofibromas, giant cell astrocytomas, renal angiomyolipomas, and pulmonary lymphangioleiomyomatosis. TSC is caused by mutations of either of the hamartin or tuberin proteins that are mainly cytoplasmic. Some studies published in the 1980s reported that TSC is associated with radiosensitivity. However, its molecular basis in TSC cells is not documented enough. Here, we examined the functionality of the repair and signaling of radiation-induced DNA double-strand breaks (DSB) in fibroblasts derived from TSC patients. Quiescent TSC fibroblast cells elicited abnormally low rate of recognized DSB reflected by a low yield of nuclear foci formed by phosphorylated H2AX histones. Irradiated TSC cells also presented a delay in the nucleo-shuttling of the ATM kinase, potentially due to a specific binding of ATM to mutated TSC protein in cytoplasm. Lastly, TSC fibroblasts showed abnormally high MRE11 nuclease activity suggesting genomic instability. A combination of biphosphonates and statins complemented these impairments by facilitating the nucleoshuttling of ATM and increasing the yield of recognized DSB. Our results showed that TSC belongs to the group of syndromes associated with low but significant defect of DSB signaling and delay in the ATM nucleo-shuttling associated with radiosensitivity.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Núcleo Celular/metabolismo , Sobrevivência Celular/fisiologia , Esclerose Tuberosa/metabolismo , Linhagem Celular , Núcleo Celular/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Quebras de DNA de Cadeia Dupla , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Humanos , Transporte Proteico , Tolerância a Radiação , Proteína 1 do Complexo Esclerose Tuberosa/metabolismo , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA