Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Neurobiol ; 42(2): 333-360, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33813668

RESUMO

This review is on how current knowledge of brainstem control of gastric mechanical function unfolded over nearly four decades from the perspective of our research group. It describes data from a multitude of different types of studies involving retrograde neuronal tracing, microinjection of drugs, whole-cell recordings from rodent brain slices, receptive relaxation reflex, accommodation reflex, c-Fos experiments, immunohistochemical methods, electron microscopy, transgenic mice, optogenetics, and GABAergic signaling. Data obtained indicate the following: (1) nucleus tractus solitarius (NTS)-dorsal motor nucleus of the vagus (DMV) noradrenergic connection is required for reflex control of the fundus; (2) second-order nitrergic neurons in the NTS are also required for reflex control of the fundus; (3) a NTS GABAergic connection is required for reflex control of the antrum; (4) a single DMV efferent pathway is involved in brainstem control of gastric mechanical function under most experimental conditions excluding the accommodation reflex. Dual-vagal effectors controlling cholinergic and non-adrenergic and non-cholinergic (NANC) input to the stomach may be part of the circuitry of this reflex. (5) GABAergic signaling within the NTS via Sst-GABA interneurons determine the basal (resting) state of gastric tone and phasic contractions. (6) For the vagal-vagal reflex to become operational, an endogenous opioid in the NTS is released and the activity of Sst-GABA interneurons is suppressed. From the data, we suggest that the CNS has the capacity to provide region-specific control over the proximal (fundus) and distal (antrum) stomach through engaging phenotypically different efferent inputs to the DMV.


Assuntos
Tronco Encefálico , Estômago , Animais , Tronco Encefálico/fisiologia , Camundongos , Técnicas de Patch-Clamp , Núcleo Solitário , Nervo Vago/fisiologia
2.
J Neurosci ; 33(33): 13286-99, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23946387

RESUMO

Activation of melanocortin 4 receptors (MC4-Rs) in brain nuclei associated with food intake profoundly influences consummatory behavior. Of these nuclei, the dorsal motor vagal nucleus (DMV), which has a dense concentration of MC4-Rs, is an important regulator of gastric tone and motility. Hence, the present study sought to examine the role of MC4-Rs in this nucleus on these activities. Using an in vivo approach, MC4-R agonists, melanotan-II (MT-II) or α-melanocyte stimulating hormone (α-MSH), were unilaterally microinjected into the DMV of rats, and their effects were noted on gastric activity. MT-II decreased phasic contractions, whereas α-MSH increased their amplitude. Both effects were blocked by the MC4-R antagonist SHU9119 or by ipsilateral vagotomy. Microinjection of the agonists (MT-II and α-MSH) into the overlying nucleus of the solitary tract (NTS), an important component of "vago-vagal" gastric circuitry, decreased phasic contractions. In addition, α-MSH reduced gastric tone and mean arterial blood pressure. To study the underlying mechanisms of the effect of MC4-R stimulation on gastric activity, electrophysiological recordings were made from labeled DMV antrum neurons in rat pups and MC4-R(-/-) mice. Bath application of MT-II or α-MSH significantly reduced spontaneous action potentials (but not in MC4-R(-/-) mice). However, in low-calcium ACSF, MT-II decreased neuronal firing, whereas α-MSH increased it. These effects mirror those of our in vivo DMV studies. Altogether, our novel findings show that activation of MC4-Rs in the brainstem, particularly in the medial NTS by the endogenous peptide α-MSH, modulates gastric activity, which may have physiological relevance for food intake and gastric function.


Assuntos
Tronco Encefálico/metabolismo , Receptor Tipo 4 de Melanocortina/metabolismo , Transdução de Sinais/fisiologia , Estômago/inervação , Animais , Masculino , Camundongos , Camundongos Knockout , Ratos , Ratos Sprague-Dawley , Nervo Vago/fisiologia , alfa-MSH/metabolismo , alfa-MSH/farmacologia
3.
Aging Cell ; 23(4): e14087, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38332648

RESUMO

Age-related dysfunctions in specific neurotransmitter systems likely play an important role in cognitive decline even in its most subtle forms. Therefore, preservation or improvement of cognition via augmentation of neurotransmission is a potential therapeutic strategy to prevent further cognitive deficits. Here we identified a particular neuronal vulnerability in the aged Fischer 344 rat brain, an animal model of neurocognitive aging. Specifically, we demonstrated a marked impairment in glutamate-stimulated release of norepinephrine (NE) in the hippocampus and cerebral cortex of aged rats, and established that this release was mediated by N-methyl-D-aspartate (NMDA) receptors. Further, we also demonstrated that this decrease in NE release is fully rescued by the psychostimulant drug amphetamine (AMPH). Moreover, we showed that AMPH increases dendritic spine maturation, and importantly shows preclinical efficacy in restoring memory deficits in the aged rat through its actions to potentiate NE neurotransmission at ß-adrenergic receptors. Taken together, our results suggest that deficits in glutamate-stimulated release of NE may contribute to and possibly be a determinant of neuronal vulnerability underlying cognitive decline during aging, and that these deficits can be corrected with currently available drugs. Overall these studies suggest that repurposing of psychostimulants for age-associated cognitive deficits is a potential avenue to delay or prevent cognitive decline and/or frank dementia later in life.


Assuntos
Anfetamina , Estimulantes do Sistema Nervoso Central , Ratos , Animais , Anfetamina/farmacologia , Norepinefrina/farmacologia , Ratos Sprague-Dawley , Espinhas Dendríticas/metabolismo , Estimulantes do Sistema Nervoso Central/farmacologia , Córtex Cerebral/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Hipocampo/metabolismo , Ratos Endogâmicos F344 , Ácido Glutâmico , Cognição
4.
J Comp Neurol ; 531(15): 1562-1581, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37507853

RESUMO

The pyloric sphincter receives parasympathetic vagal innervation from the dorsal motor nucleus of the vagus (DMV). However, little is known about its higher-order neurons and the nuclei that engage the DMV neurons controlling the pylorus. The purpose of the present study was twofold. First, to identify neuroanatomical connections between higher-order neurons and the DMV. This was carried out by using the transneuronal pseudorabies virus PRV-152 injected into rat pylorus torus and examining the brains of these animals for PRV labeling. Second, to identify the specific sites within the DMV that functionally control the motility and tone of the pyloric sphincter. For these studies, experiments were performed to assess the effect of DMV stimulation on pylorus activity in urethane-anesthetized male rats. A strain gauge force transducer was sutured onto the pyloric tonus to monitor tone and motility. L-glutamate (500 pmol/30 nL) was microinjected unilaterally into the rostral and caudal areas of the DMV. Data from the first study indicated that neurons labeled with PRV occurred in the DMV, hindbrain raphe nuclei, midbrain Edinger-Westphal nucleus, ventral tegmental area, lateral habenula, and arcuate nucleus. Data from the second study indicated that microinjected L-glutamate into the rostral DMV results in contraction of the pylorus blocked by intravenously administered atropine and ipsilateral vagotomy. L-glutamate injected into the caudal DMV relaxed the pylorus. This response was abolished by ipsilateral vagotomy but not by intravenously administered atropine or L-NG-nitroarginine methyl ester (L-NAME). These findings identify the anatomical and functional brain neurocircuitry involved in controlling the pyloric sphincter. Our results also show that site-specific stimulation of the DMV can differentially influence the activity of the pyloric sphincter by separate vagal nerve pathways.


Assuntos
Ácido Glutâmico , Piloro , Ratos , Masculino , Animais , Piloro/inervação , Nervo Vago/fisiologia , Bulbo/fisiologia , Atropina/farmacologia
5.
Neuropharmacology ; 166: 107921, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31881170

RESUMO

Desensitization of the nicotinic acetylcholine receptor (nAChR) containing the ß2 subunit is a potentially critical mechanism underlying the body weight (BW) reducing effects of nicotine. The purpose of this study was a) to determine the α subunit(s) that partners with the ß2 subunit to form the nAChR subtype that endogenously regulates energy balance and b) to probe the extent to which nAChR desensitization could be involved in the regulation of BW. We demonstrate that deletion of either the α4 or the ß2, but not the α5, subunit of the nAChR suppresses weight gain in a sex-dependent manner. Furthermore, chronic treatment with the ß2-selective nAChR competitive antagonist dihydro-ß-erythroidine (DHßE) in mice fed a high-fat diet suppresses weight gain. These results indicate that heteromeric α4ß2 nAChRs play a role as intrinsic regulators of energy balance and that desensitizing or inhibiting this nAChR is likely a relevant mechanism and thus could be a strategy for weight loss.


Assuntos
Peso Corporal/fisiologia , Di-Hidro-beta-Eritroidina/administração & dosagem , Receptores Nicotínicos/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Dieta Hiperlipídica/efeitos adversos , Feminino , Bombas de Infusão , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Nicotínicos/deficiência , Aumento de Peso/efeitos dos fármacos , Aumento de Peso/fisiologia
6.
Front Neurosci ; 13: 967, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31572117

RESUMO

Central nervous system regulation of the gastric tone and motility is primarily mediated via preganglionic neurons of the dorsal motor nucleus of the vagus (DMV). This is thought to occur by simultaneous engagement of both independent excitatory and inhibitory pathways from the DMV and has been proposed to underlie the opposing effects seen on gastric tone and motility in a number of in vivo models. Contrary to this view, we have been unable to find any evidence for this "dual effector" pathway. Since this possibility is so fundamental to how the brain-gut axis may interact in light of both peripheral and central demands, we decided to explore it further in two separate animal models previously used in conjunction with GABAB signaling to report the existence of a "dual effector" pathway. Using anesthetized rats or ferrets, we microinjected baclofen (7.5 pmol; n = 6), a GABAB agonist into the DMV of rats or intravenously administered it (0.5 mg/kg; n = 4) in ferrets. In rats, unilateral microinjection of baclofen into the DMV caused a robust dose-dependent increase in gastric tone and motility that was abolished by ipsilateral vagotomy and counteracted by pretreatment with atropine (0.1 mg/kg; IV). Similarly, as microinjection in the rats, IV administration of baclofen (0.5 mg/kg) in the ferrets induced its characteristic excitatory effects on gastric tone and motility, which were blocked by either pre- or post-treatment with atropine (0.1 mg/kg; IV). Altogether, our data provide evidence that the gastric musculature (other than the gastric sphincters) is regulated by a "single effector" DMV pathway using acetylcholine.

7.
Front Neurosci ; 12: 104, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29545738

RESUMO

Background/Objectives: We tested the hypothesis that abolishing vagal nerve activity will reverse the obesity phenotype of melanocortin 4 receptor knockout mice (Mc4r-/-). Subjects/Methods: In two separate studies, we examined the efficacy of bilateral subdiaphragmatic vagotomy (SDV) with pyloroplasty in the prevention and treatment of obesity in Mc4r-/- mice. Results: In the first study, SDV prevented >20% increase in body weight (BW) associated with this genotype. This was correlated with a transient reduction in overall food intake (FI) in the preventative arm of the study. Initially, SDV mice had reduced weekly FI; however, FI normalized to that of controls and baseline FI within the 8-week study period. In the second study, the severe obesity that is characteristic of the adult Mc4r-/- genotype was significantly improved by SDV with a magnitude of 30% loss in excess BW over a 4-week period. Consistent with the first preventative study, within the treatment arm, SDV mice also demonstrated a transient reduction in FI relative to control and baseline levels that normalized over subsequent weeks. In addition to the accompanying loss in weight, mice subjected to SDV showed a decrease in respiratory exchange ratio (RER), and an increase in locomotor activity (LA). Analysis of the white fat-pad deposits of these mice showed that they were significantly less than the control groups. Conclusions: Altogether, our data demonstrates that SDV both prevents gain in BW and causes weight loss in severely obese Mc4r-/- mice. Moreover, it suggests that an important aspect of weight reduction for this type of monogenic obesity involves loss of signaling in vagal motor neurons.

8.
Neuropharmacology ; 110(Pt A): 165-174, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27444741

RESUMO

Nicotine's effect on food intake and body weight has been well documented; however, the relevant receptors underlying these effects have not been firmly established. The purpose of the present study was to: (1) identify the nicotinic acetylcholine receptor (nAChR) subtype involved in food intake and body weight; (2) establish whether food intake and body weight reduction produced by nicotinic drugs are due to activation or desensitization of nAChRs; and, (3) assess the role of the melanocortin system in nicotinic drug effects on food intake and body weight. To identify the nAChR, we tested the effect of sazetidine-A (SAZ-A), a relatively selective ligand of ß2-containing nAChRs, on food intake and body weight in obese mice. SAZ-A (3 mg/kg; SC) administered twice-daily significantly decreased food intake and body weight. To assess whether these effects involved desensitization, SAZ-A was administered to non-obese mice via osmotic pump, which, due to its slow sustained drug delivery method, causes prolonged desensitization. SAZ-A via osmotic pump delivery significantly decreased the gain in body weight and reduced food intake. In contrast, body weight was unaffected by SAZ-A in ß2(-/-) mice or in mice lacking the melanocortin 4 receptor (MC4R). These results indicate that ß2 containing nAChRs are essential to SAZ-A's inhibitory effect on body weight and food intake and engage the melanocortin system.


Assuntos
Azetidinas/administração & dosagem , Peso Corporal/fisiologia , Ingestão de Alimentos/fisiologia , Piridinas/administração & dosagem , Receptores Nicotínicos/fisiologia , Animais , Peso Corporal/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Bombas de Infusão , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Camundongos Transgênicos , Nicotina/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA