Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioconjug Chem ; 31(5): 1551-1561, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32319752

RESUMO

Human granulocyte-macrophage colony-stimulating factor (hGMCSF) is crucial in the immune system as it stimulates survival, proliferation, differentiation, and functional activation of myeloid hematopoietic cells. hGMCSF is integral to approved therapies, including monoclonal antibodies against checkpoint inhibitors, chimeric antigen receptors, and prevention of chemotherapy-induced neutropenia. Recombinant hGMCSF can be purified from Escherichia. coli; however, it forms inclusion bodies that require solubilization and refolding. Alternatively, this manuscript describes its fusion with an elastin-like polypeptide (ELP). Previously reported as purification tags and solubility enhancers, ELPs are recombinant polypeptides that undergo reversible temperature-dependent phase separation. This report is the first to show that fusion to an ELP enables direct purification of hGMCSF fusions from the soluble fraction of bacterial lysate. Surprisingly, these ELP-fusions assemble stable, small, spherical nanoparticles that maintain pro-mitotic activity of hGMCSF. These nanoparticles exhibit ELP-mediated phase separation; however, nanoparticle assembly significantly increases the entropic and enthalpic cost of phase separation compared to ELP alone. The attachment of a high molecular weight ELP to a difficult-to-express protein, like hGMCSF, appears to be a useful strategy to stabilize bioactive, protein-based nanoparticles, which may have broad applications in medicine and biology.


Assuntos
Elastina/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/química , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Nanopartículas , Entropia , Humanos , Temperatura
2.
Bioconjug Chem ; 28(11): 2715-2728, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28937754

RESUMO

Recombinant protein-polymer scaffolds such as elastin-like polypeptides (ELPs) offer drug-delivery opportunities including biocompatibility, monodispersity, and multifunctionality. We recently reported that the fusion of FK-506 binding protein 12 (FKBP) to an ELP nanoparticle (FSI) increases rapamycin (Rapa) solubility, suppresses tumor growth in breast cancer xenografts, and reduces side effects observed with free-drug controls. This new report significantly advances this carrier strategy by demonstrating the coassembly of two different ELP diblock copolymers containing drug-loading and tumor-targeting domains. A new ELP nanoparticle (ISR) was synthesized that includes the canonical integrin-targeting ligand (Arg-Gly-Asp, RGD). FSI and ISR mixed in a 1:1 molar ratio coassemble into bifunctional nanoparticles containing both the FKBP domain for Rapa loading and the RGD ligand for integrin binding. Coassembled nanoparticles were evaluated for bifunctionality by performing in vitro cell-binding and drug-retention assays and in vivo MDA-MB-468 breast tumor regression and tumor-accumulation studies. The bifunctional nanoparticle demonstrated superior cell target binding and similar drug retention to FSI; however, it enhanced the formulation potency, such that tumor growth was suppressed at a 3-fold lower dose compared to an untargeted FSI-Rapa control. This data suggests that ELP-mediated scaffolds are useful tools for generating multifunctional nanomedicines with potential activity in cancer.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Portadores de Fármacos/química , Elastina/química , Integrinas/metabolismo , Sirolimo/administração & dosagem , Animais , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/uso terapêutico , Mama/efeitos dos fármacos , Mama/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Camundongos , Camundongos Nus , Nanopartículas/química , Peptídeos/química , Sirolimo/farmacocinética , Sirolimo/farmacologia , Sirolimo/uso terapêutico
3.
Theranostics ; 7(16): 3856-3872, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29109782

RESUMO

Recombinant Elastin-Like Polypeptides (ELPs) serve as attractive scaffolds for nanoformulations because they can be charge-neutral, water soluble, high molecular weight, monodisperse, biodegradable, and decorated with functional proteins. We recently reported that fusion of the FK-506 binding protein 12 (FKBP) to an ELP nanoparticle (FSI) reduces rapamycin (Rapa) toxicity and enables intravenous (IV) therapy in both a xenograft breast cancer model and a murine autoimmune disease model. Rapa has poor solubility, which leads to variable oral bioavailability or drug precipitation following parenteral administration. While IV administration is routine during chemotherapy, cytostatic molecules like Rapa would require repeat administrations in clinical settings. To optimize FKBP/Rapa for subcutaneous (SC) administration, this manuscript expands upon first-generation FSI nanoparticles (Rh ~ 25 nm) and compares them with two second-generation carriers (FA and FAF) that: i) do not self-assemble; ii) retain a hydrodynamic radius (Rh ~ 7 nm) above the renal filtration cutoff; iii) increase tumor accumulation; and iv) have either one (FA) or two (FAF) drug-binding FKBP domains per ELP protein. Methods: The carriers were compared and evaluated for temperature-concentration phase behavior by UV-Vis spectrophotometry; equilibrium binding and thermodynamics by Isothermal Titration Calorimetry; drug retention and formulation stability by Dialysis and Dynamic Light Scattering; in vitro efficacy using a cell proliferation assay; in vivo efficacy in human MDA-MB-468 orthotopic breast cancer xenografts; downstream target inhibition using western blot; tissue histopathology; and bio-distribution via optical imaging in the orthotopic xenograft mouse model. Results: Named after the two-headed bird in Hindu mythology, the 'Berunda polypeptide' FAF with molecular weight of 97 kDa and particle size, Rh ~ 7 nm demonstrated polypeptide conformation of a soluble hydrated coiled polymer, retained formulation stability for one month post Rapa loading, eliminated toxicity observed with free Rapa after SC administration, suppressed tumor growth, decreased phosphorylation of a downstream target, and increased tumor accumulation in orthotopic breast tumor xenografts. Conclusion: This comprehensive manuscript demonstrates the versatility of recombinant protein-polymers to investigate drug carrier architectures. Furthermore, their facilitation of SC administration of poorly soluble drugs, like Rapa, may enable chronic self-administration in patients.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Imagem Óptica/métodos , Peptídeos/química , Sirolimo/química , Sirolimo/uso terapêutico , Animais , Feminino , Camundongos , Nanopartículas/química , Proteínas de Ligação a Tacrolimo/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo
4.
Protein Sci ; 26(9): 1785-1795, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28639381

RESUMO

Elastin-Like Polypeptides (ELPs) reversibly phase separate in response to changes in temperature, pressure, concentration, pH, and ionic species. While powerful triggers, biological microenvironments present a multitude of more specific biological cues, such as antibodies, cytokines, and cell-surface receptors. To develop better biosensors and bioresponsive drug carriers, rational strategies are required to sense and respond to these target proteins. We recently reported that noncovalent association of two ELP fusion proteins to a "chemical inducer of dimerization" small molecule (1.5 kDa) induces phase separation at physiological temperatures. Having detected a small molecule, here we present the first evidence that ELP multimerization can also detect a much larger (60 kDa) protein target. To demonstrate this strategy, ELPs were biotinylated at their amino terminus and mixed with tetrameric streptavidin. At a stoichiometric ratio of [4:1], two to three biotin-ELPs associate with streptavidin into multimeric complexes with an apparent Kd of 5 nM. The increased ELP density around a streptavidin core strongly promotes isothermal phase separation, which was tuned to occur at physiological temperature. This phase separation reverses upon saturation with excess streptavidin, which only favors [1:1] complexes. Together, these findings suggest that ELP association with multimeric biomolecules is a viable strategy to deliberately engineer ELPs that respond to multimeric protein substrates.


Assuntos
Elastina/química , Elastina/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Multimerização Proteica/fisiologia , Biotina/química , Biotina/metabolismo , Tamanho da Partícula , Ligação Proteica , Estreptavidina/química , Estreptavidina/metabolismo , Temperatura , Termodinâmica
5.
J Control Release ; 240: 93-108, 2016 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-26578439

RESUMO

Elastin-like polypeptides (ELPs) constitute a genetically engineered class of 'protein polymers' derived from human tropoelastin. They exhibit a reversible phase separation whereby samples remain soluble below a transition temperature (Tt) but form amorphous coacervates above Tt. Their phase behavior has many possible applications in purification, sensing, activation, and nanoassembly. As humanized polypeptides, they are non-immunogenic, substrates for proteolytic biodegradation, and can be decorated with pharmacologically active peptides, proteins, and small molecules. Recombinant synthesis additionally allows precise control over ELP architecture and molecular weight, resulting in protein polymers with uniform physicochemical properties suited to the design of multifunctional biologics. As such, ELPs have been employed for various uses including as anti-cancer agents, ocular drug delivery vehicles, and protein trafficking modulators. This review aims to offer the reader a catalogue of ELPs, their various applications, and potential for commercialization across a broad spectrum of fields.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Elastina/administração & dosagem , Nanomedicina/métodos , Peptídeos/administração & dosagem , Administração Oftálmica , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/metabolismo , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/metabolismo , Sistemas de Liberação de Medicamentos/tendências , Elastina/química , Elastina/metabolismo , Humanos , Nanomedicina/tendências , Peptídeos/química , Peptídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA