Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cells ; 12(4)2023 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-36831263

RESUMO

Diffuse large B-cell lymphoma (DLBCL) is the most common form of non-Hodgkin lymphoma and frequently develops through the accumulation of several genetic variations. With the advancement in high-throughput techniques, in addition to mutations and copy number variations, structural variations have gained importance for their role in genome instability leading to tumorigenesis. In this study, in order to understand the genetics of DLBCL pathogenesis, we carried out a whole-genome mutation profile analysis of eleven human cell lines from germinal-center B-cell-like (GCB-7) and activated B-cell-like (ABC-4) subtypes of DLBCL. Analysis of genetic variations including small sequence variants and large structural variations across the cell lines revealed distinct variation profiles indicating the heterogeneous nature of DLBCL and the need for novel patient stratification methods to design potential intervention strategies. Validation and prognostic significance of the variants was assessed using annotations provided for DLBCL samples in cBioPortal for Cancer Genomics. Combining genetic variations revealed new subgroups between the subtypes and associated enriched pathways, viz., PI3K-AKT signaling, cell cycle, TGF-beta signaling, and WNT signaling. Mutation landscape analysis also revealed drug-variant associations and possible effectiveness of known and novel DLBCL treatments. From the whole-genome-based mutation analysis, our findings suggest putative molecular genetics of DLBCL lymphomagenesis and potential genomics-driven precision treatments.


Assuntos
Variações do Número de Cópias de DNA , Linfoma Difuso de Grandes Células B , Humanos , Fosfatidilinositol 3-Quinases/genética , Linfoma Difuso de Grandes Células B/metabolismo , Mutação , Linhagem Celular
2.
Cancer Discov ; 13(4): 880-909, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36700848

RESUMO

Blocking cancer genomic instability may prevent tumor diversification and escape from therapies. We show that, after MAPK inhibitor (MAPKi) therapy in patients and mice bearing patient-derived xenografts (PDX), acquired resistant genomes of metastatic cutaneous melanoma specifically amplify resistance-driver, nonhomologous end-joining (NHEJ), and homologous recombination repair (HRR) genes via complex genomic rearrangements (CGR) and extrachromosomal DNAs (ecDNA). Almost all sensitive and acquired-resistant genomes harbor pervasive chromothriptic regions with disproportionately high mutational burdens and significant overlaps with ecDNA and CGR spans. Recurrently, somatic mutations within ecDNA and CGR amplicons enrich for HRR signatures, particularly within acquired resistant tumors. Regardless of sensitivity or resistance, breakpoint-junctional sequence analysis suggests NHEJ as critical to double-stranded DNA break repair underlying CGR and ecDNA formation. In human melanoma cell lines and PDXs, NHEJ targeting by a DNA-PKCS inhibitor prevents/delays acquired MAPKi resistance by reducing the size of ecDNAs and CGRs early on combination treatment. Thus, targeting the causes of genomic instability prevents acquired resistance. SIGNIFICANCE: Acquired resistance often results in heterogeneous, redundant survival mechanisms, which challenge strategies aimed at reversing resistance. Acquired-resistant melanomas recurrently evolve resistance-driving and resistance-specific amplicons via ecDNAs and CGRs, thereby nominating chromothripsis-ecDNA-CGR biogenesis as a resistance-preventive target. Specifically, targeting DNA-PKCS/NHEJ prevents resistance by suppressing ecDNA/CGR rearrangements in MAPKi-treated melanomas. This article is highlighted in the In This Issue feature, p. 799.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Animais , Camundongos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Linhagem Celular , Instabilidade Genômica , DNA
3.
Nat Med ; 29(5): 1123-1134, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37106167

RESUMO

Metastasis and failure of present-day therapies represent the most common causes of mortality in patients with cutaneous melanoma. To identify the underlying genetic and transcriptomic landscapes, in this study we analyzed multi-organ metastases and tumor-adjacent tissues from 11 rapid autopsies after treatment with MAPK inhibitor (MAPKi) and/or immune checkpoint blockade (ICB) and death due to acquired resistance. Either treatment elicits shared genetic alterations that suggest immune-evasive, cross-therapy resistance mechanisms. Large, non-clustered deletions, inversions and inter-chromosomal translocations dominate rearrangements. Analyzing data from separate melanoma cohorts including 345 therapy-naive patients and 35 patients with patient-matched pre-treatment and post-acquired resistance tumor samples, we performed cross-cohort analyses to identify MAPKi and ICB as respective contributors to gene amplifications and deletions enriched in autopsy versus therapy-naive tumors. In the autopsy cohort, private/late mutations and structural variants display shifted mutational and rearrangement signatures, with MAPKi specifically selecting for signatures of defective homologous-recombination, mismatch and base-excision repair. Transcriptomic signatures and crosstalks with tumor-adjacent macroenvironments nominated organ-specific adaptive pathways. An immune-desert, CD8+-macrophage-biased archetype, T-cell exhaustion and type-2 immunity characterized the immune contexture. This multi-organ analysis of therapy-resistant melanoma presents preliminary insights with potential to improve therapeutic strategies.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Resistencia a Medicamentos Antineoplásicos/genética , Transcriptoma/genética , Perfilação da Expressão Gênica
4.
Nat Genet ; 54(11): 1746-1754, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36253572

RESUMO

Extrachromosomal DNA (ecDNA) is a common mode of oncogene amplification but is challenging to analyze. Here, we adapt CRISPR-CATCH, in vitro CRISPR-Cas9 treatment and pulsed field gel electrophoresis of agarose-entrapped genomic DNA, previously developed for bacterial chromosome segments, to isolate megabase-sized human ecDNAs. We demonstrate strong enrichment of ecDNA molecules containing EGFR, FGFR2 and MYC from human cancer cells and NRAS ecDNA from human metastatic melanoma with acquired therapeutic resistance. Targeted enrichment of ecDNA versus chromosomal DNA enabled phasing of genetic variants, identified the presence of an EGFRvIII mutation exclusively on ecDNAs and supported an excision model of ecDNA genesis in a glioblastoma model. CRISPR-CATCH followed by nanopore sequencing enabled single-molecule ecDNA methylation profiling and revealed hypomethylation of the EGFR promoter on ecDNAs. We distinguished heterogeneous ecDNA species within the same sample by size and sequence with base-pair resolution and discovered functionally specialized ecDNAs that amplify select enhancers or oncogene-coding sequences.


Assuntos
Glioblastoma , Neoplasias , Humanos , Oncogenes , DNA/genética , Neoplasias/genética , Neoplasias/patologia , Glioblastoma/genética , Receptores ErbB/genética
5.
Cancer Discov ; 12(4): 1046-1069, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34930786

RESUMO

Focal amplifications (FA) can mediate targeted therapy resistance in cancer. Understanding the structure and dynamics of FAs is critical for designing treatments that overcome plasticity-mediated resistance. We developed a melanoma model of dual MAPK inhibitor (MAPKi) resistance that bears BRAFV600 amplifications through either extrachromosomal DNA (ecDNA)/double minutes (DM) or intrachromosomal homogenously staining regions (HSR). Cells harboring BRAFV600E FAs displayed mode switching between DMs and HSRs, from both de novo genetic changes and selection of preexisting subpopulations. Plasticity is not exclusive to ecDNAs, as cells harboring HSRs exhibit drug addiction-driven structural loss of BRAF amplicons upon dose reduction. FA mechanisms can couple with kinase domain duplications and alternative splicing to enhance resistance. Drug-responsive amplicon plasticity is observed in the clinic and can involve other MAPK pathway genes, such as RAF1 and NRAS. BRAF FA-mediated dual MAPKi-resistant cells are more sensitive to proferroptotic drugs, extending the spectrum of ferroptosis sensitivity in MAPKi resistance beyond cases of dedifferentiation. SIGNIFICANCE: Understanding the structure and dynamics of oncogene amplifications is critical for overcoming tumor relapse. BRAF amplifications are highly plastic under MAPKi dosage challenges in melanoma, through involvement of de novo genomic alterations, even in the HSR mode. Moreover, BRAF FA-driven, dual MAPKi-resistant cells extend the spectrum of resistance-linked ferroptosis sensitivity. This article is highlighted in the In This Issue feature, p. 873.


Assuntos
Melanoma , Proteínas Proto-Oncogênicas B-raf , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Mutação , Recidiva Local de Neoplasia/tratamento farmacológico , Oncogenes , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo
6.
Precis Clin Med ; 2(4): 246-258, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35693879

RESUMO

Diffuse large B-cell lymphoma (DLBCL) is the aggressive form of haematological malignancies with relapse/refractory in ~ 40% of cases. It mostly develops due to accumulation of various genetic and epigenetic variations that contribute to its aggressiveness. Though large-scale structural alterations have been reported in DLBCL, their functional role in pathogenesis and as potential targets for therapy is not yet well understood. In this study we performed detection and analysis of copy number variations (CNVs) in 11 human DLBCL cell lines (4 activated B-cell-like [ABC] and 7 germinal-centre B-cell-like [GCB]), that serve as model systems for DLBCL cancer cell biology. Significant heterogeneity observed in CNV profiles of these cell lines and poor prognosis associated with ABC subtype indicates the importance of individualized screening for diagnostic and prognostic targets. Functional analysis of key cancer genes exhibiting copy alterations across the cell lines revealed activation/disruption of ten potentially targetable immuno-oncogenic pathways. Genome guided in silico therapy that putatively target these pathways is elucidated. Based on our analysis, five CNV-genes associated with worst survival prognosis are proposed as potential prognostic markers of DLBCL.

7.
Front Genet ; 9: 537, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30487811

RESUMO

The current trend in clinical data analysis is to understand how individuals respond to therapies and drug interactions based on their genetic makeup. This has led to a paradigm shift in healthcare; caring for patients is now 99% information and 1% intervention. Reducing costs of next generation sequencing (NGS) technologies has made it possible to take genetic profiling to the clinical setting. This requires not just fast and accurate algorithms for variant detection, but also a knowledge-base for variant annotation and prioritization to facilitate tailored therapeutics based on an individual's genetic profile. Here we show that it is possible to provide a fast and easy access to all possible information about a variant and its impact on the gene, its protein product, associated pathways and drug-variant interactions by integrating previously reported knowledge from various databases. With this objective, we have developed a pipeline, Sequence Variants Identification and Annotation (SeqVItA) that provides end-to-end solution for small sequence variants detection, annotation and prioritization on a single platform. Parallelization of the variant detection step and with numerous resources incorporated to infer functional impact, clinical relevance and drug-variant associations, SeqVItA will benefit the clinical and research communities alike. Its open-source platform and modular framework allows for easy customization of the workflow depending on the data type (single, paired, or pooled samples), variant type (germline and somatic), and variant annotation and prioritization. Performance comparison of SeqVItA on simulated data and detection, interpretation and analysis of somatic variants on real data (24 liver cancer patients) is carried out. We demonstrate the efficacy of annotation module in facilitating personalized medicine based on patient's mutational landscape. SeqVItA is freely available at https://bioinf.iiit.ac.in/seqvita.

8.
PLoS One ; 13(4): e0195334, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29621297

RESUMO

Discovery of copy number variations (CNVs), a major category of structural variations, have dramatically changed our understanding of differences between individuals and provide an alternate paradigm for the genetic basis of human diseases. CNVs include both copy gain and copy loss events and their detection genome-wide is now possible using high-throughput, low-cost next generation sequencing (NGS) methods. However, accurate detection of CNVs from NGS data is not straightforward due to non-uniform coverage of reads resulting from various systemic biases. We have developed an integrated platform, iCopyDAV, to handle some of these issues in CNV detection in whole genome NGS data. It has a modular framework comprising five major modules: data pre-treatment, segmentation, variant calling, annotation and visualization. An important feature of iCopyDAV is the functional annotation module that enables the user to identify and prioritize CNVs encompassing various functional elements, genomic features and disease-associations. Parallelization of the segmentation algorithms makes the iCopyDAV platform even accessible on a desktop. Here we show the effect of sequencing coverage, read length, bin size, data pre-treatment and segmentation approaches on accurate detection of the complete spectrum of CNVs. Performance of iCopyDAV is evaluated on both simulated data and real data for different sequencing depths. It is an open-source integrated pipeline available at https://github.com/vogetihrsh/icopydav and as Docker's image at http://bioinf.iiit.ac.in/icopydav/.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Algoritmos , Biologia Computacional/métodos , Computadores , Variações do Número de Cópias de DNA/genética , Genoma Humano/genética , Genômica/métodos , Humanos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA