Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biofilm ; 4: 100087, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36324526

RESUMO

Biofilms in wounds typically consist of aggregates of bacteria, most often Pseudomonas aeruginosa and Staphylococcus aureus, in close association with each other and the host microenvironment. Given this, the interplay across host and microbial elements, including the biochemical and nutrient profile of the microenvironment, likely influences the structure and organization of wound biofilms. While clinical studies, in vivo and ex vivo model systems have provided insights into the distribution of P. aeruginosa and S. aureus in wounds, they are limited in their ability to provide a detailed characterization of biofilm structure and organization across the host-microbial interface. On the other hand, biomimetic in vitro systems, such as host cell surfaces and simulant media conditions, albeit reductionist, have been shown to support the co-existence of P. aeruginosa and S. aureus biofilms, with species-dependent localization patterns and interspecies interactions. Therefore, composite in vitro models that bring together key features of the wound microenvironment could provide unprecedented insights into the structure and organization of mixed-species biofilms. We have built a four-dimensional (4-D) wound microenvironment consisting of a 3-D host cell scaffold of co-cultured human epidermal keratinocytes and dermal fibroblasts, and an in vitro wound milieu (IVWM); the IVWM provides the fourth dimension that represents the biochemical and nutrient profile of the wound infection state. We leveraged this 4-D wound microenvironment, in comparison with biofilms in IVWM alone and standard laboratory media, to probe the structure of mixed-species P. aeruginosa and S. aureus biofilms across multiple levels of organization such as aggregate dimensions and biomass thickness, species co-localization and spatial organization within the biomass, overall biomass composition and interspecies interactions. In doing so, the 4-D wound microenvironment platform provides multi-level insights into the structure of mixed-species biofilms, which we incorporate into the current understanding of P. aeruginosa and S. aureus organization in the wound bed.

2.
Biofilm ; 3: 100047, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33912828

RESUMO

Bacterial biofilms are a major cause of delayed wound healing. Consequently, the study of wound biofilms, particularly in host-relevant conditions, has gained importance. Most in vitro studies employ refined laboratory media to study biofilms, representing conditions that are not relevant to the infection state. To mimic the wound milieu, in vitro biofilm studies often incorporate serum or plasma in growth conditions, or employ clot or matrix-based biofilm models. While incorporating serum or plasma alone is a minimalistic approach, the more complex in vitro wound models are technically demanding, and poorly compatible with standard biofilm assays. Based on previous reports of clinical wound fluid composition, we have developed an in vitro wound milieu (IVWM) that includes, in addition to serum (to recapitulate wound fluid), matrix elements and biochemical factors. With Luria-Bertani broth and Fetal Bovine Serum (FBS) for comparison, the IVWM was used to study planktonic growth, biofilm features, and interspecies interactions, of common wound pathogens, Staphylococcus aureus and Pseudomonas aeruginosa. We demonstrate that the IVWM recapitulates widely reported in vivo biofilm features such as biomass formation, metabolic activity, increased antibiotic tolerance, 3D structure, and interspecies interactions for monospecies and mixed-species biofilms. Further, the IVWM is simple to formulate, uses laboratory-grade components, and is compatible with standard biofilm assays. Given this, it holds potential as a tractable approach to study wound biofilms under host-relevant conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA