Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Aging Clin Exp Res ; 33(5): 1367-1370, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-31925726

RESUMO

Mitochondria constantly contribute to the cell homeostasis and this, during the lifespan of a cell, takes its toll. Indeed, the functional decline of mitochondria appears correlated to the aging of the cell. The initial idea was that excessive production of reactive oxygen species (ROS) by functionally compromised mitochondria was the causal link between the decline of the organelle functions and cellular aging. However, in recent years accumulating evidence suggests that the contribution of mitochondria to cellular aging goes beyond ROS production. In this short review, we discuss how intracellular signalling, specifically the cAMP-signalling cascade, is involved in the regulation of mitochondrial functions and potentially in the processes that link mitochondrial status to cellular aging.


Assuntos
Longevidade , Mitocôndrias , Comunicação , Espécies Reativas de Oxigênio
2.
Proc Natl Acad Sci U S A ; 115(28): E6497-E6506, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29941564

RESUMO

Evidence supporting the heterogeneity in cAMP and PKA signaling is rapidly accumulating and has been largely attributed to the localization or activity of adenylate cyclases, phosphodiesterases, and A-kinase-anchoring proteins in different cellular subcompartments. However, little attention has been paid to the possibility that, despite homogeneous cAMP levels, a major heterogeneity in cAMP/PKA signaling could be generated by the spatial distribution of the final terminators of this cascade, i.e., the phosphatases. Using FRET-based sensors to monitor cAMP and PKA-dependent phosphorylation in the cytosol and outer mitochondrial membrane (OMM) of primary rat cardiomyocytes, we demonstrate that comparable cAMP increases in these two compartments evoke higher levels of PKA-dependent phosphorylation in the OMM. This difference is most evident for small, physiological increases of cAMP levels and with both OMM-located probes and endogenous OMM proteins. We demonstrate that this disparity depends on differences in the rates of phosphatase-dependent dephosphorylation of PKA targets in the two compartments. Furthermore, we show that the activity of soluble phosphatases attenuates PKA-driven activation of the cAMP response element-binding protein while concurrently enhancing PKA-dependent mitochondrial elongation. We conclude that phosphatases can sculpt functionally distinct cAMP/PKA domains even in the absence of gradients or microdomains of this messenger. We present a model that accounts for these unexpected results in which the degree of PKA-dependent phosphorylation is dictated by both the subcellular distribution of the phosphatases and the different accessibility of membrane-bound and soluble phosphorylated substrates to the cytosolic enzymes.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Microdomínios da Membrana/enzimologia , Proteínas de Membrana/metabolismo , Membranas Mitocondriais/enzimologia , Proteínas Mitocondriais/metabolismo , Animais , Proteínas Quinases Dependentes de AMP Cíclico/genética , Transferência Ressonante de Energia de Fluorescência , Células HeLa , Humanos , Microdomínios da Membrana/genética , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , Ratos , Ratos Sprague-Dawley
3.
Proc Natl Acad Sci U S A ; 114(38): E7997-E8006, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28874589

RESUMO

G protein-coupled receptors (GPCRs) are classically characterized as cell-surface receptors transmitting extracellular signals into cells. Here we show that central components of a GPCR signaling system comprised of the melatonin type 1 receptor (MT1), its associated G protein, and ß-arrestins are on and within neuronal mitochondria. We discovered that the ligand melatonin is exclusively synthesized in the mitochondrial matrix and released by the organelle activating the mitochondrial MT1 signal-transduction pathway inhibiting stress-mediated cytochrome c release and caspase activation. These findings coupled with our observation that mitochondrial MT1 overexpression reduces ischemic brain injury in mice delineate a mitochondrial GPCR mechanism contributing to the neuroprotective action of melatonin. We propose a new term, "automitocrine," analogous to "autocrine" when a similar phenomenon occurs at the cellular level, to describe this unexpected intracellular organelle ligand-receptor pathway that opens a new research avenue investigating mitochondrial GPCR biology.


Assuntos
Lesões Encefálicas/metabolismo , Isquemia Encefálica/metabolismo , Melatonina/biossíntese , Mitocôndrias/metabolismo , Receptor MT1 de Melatonina/metabolismo , Transdução de Sinais , Animais , Lesões Encefálicas/genética , Isquemia Encefálica/genética , Citocromos c/genética , Citocromos c/metabolismo , Masculino , Melatonina/genética , Camundongos , Mitocôndrias/genética , Receptor MT1 de Melatonina/genética
4.
Biochem Biophys Res Commun ; 500(1): 65-74, 2018 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-28501614

RESUMO

In recent years, our idea of mitochondria evolved from "mere" energy and metabolite producers to key regulators of many cellular functions. In order to preserve and protect their functional status, these organelles engage a number of dynamic processes that allow them to decrease accumulated burden and maintain their homeostasis. Indeed, mitochondria can unite (fusion), divide (fission), position themselves strategically in the cell (motility/trafficking) and if irreversibly damaged or dysfunctional eliminated (mitophagy). These dynamic processes can be controlled both by mitochondrial and cellular signalling pathways, hence allowing mitochondria to tune their function to the cellular needs. Among the regulatory mechanisms, reversible phosphorylation downstream the cyclic AMP (cAMP) signalling cascade was shown to deeply influence mitochondrial dynamics. This review explores the emerging evidence suggesting that cAMP is a key player in the orchestration of mitochondrial fusion/fission, motility and mitophagy, extending the repertoire of this second messenger, which is now recognised as a major regulator of mitochondrial homeostasis.


Assuntos
AMP Cíclico/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/genética , Mitofagia/genética , Transdução de Sinais/genética , Animais , Cálcio/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dinaminas , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Regulação da Expressão Gênica , Homeostase/genética , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Movimento , Fosforilação
5.
J Neuroinflammation ; 15(1): 297, 2018 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-30368241

RESUMO

BACKGROUND: Evidence indicates a cross-regulation between two kinases, leucine-rich repeat kinase 2 (LRRK2) and protein kinase A (PKA). In neurons, LRRK2 negatively regulates PKA activity in spiny projecting neurons during synaptogenesis and in response to dopamine D1 receptor activation acting as an A-anchoring kinase protein (AKAP). In microglia cells, we showed that LRRK2 kinase activity negatively regulates PKA, impacting NF-κB p50 signaling and the inflammatory response. Here, we explore the molecular mechanism underlying the functional interaction between LRRK2 and PKA in microglia. METHODS: To understand which step of PKA signaling is modulated by LRRK2, we used a combination of in vitro and ex vivo systems with hyperactive or inactive LRRK2 as well as different readouts of PKA signaling. RESULTS: We confirmed that LRRK2 kinase activity acts as a negative regulator of PKA activation state in microglia. Specifically, we found that LRRK2 controls PKA by affecting phosphodiesterase 4 (PDE4) activity, modulating cAMP degradation, content, and its dependent signaling. Moreover, we showed that LRRK2 carrying the G2019S pathological mutation downregulates PKA activation causing a reduction of PKA-mediated NF-κB inhibitory signaling, which results, in turn, in increased inflammation in LRRK2 G2019S primary microglia upon α-synuclein pre-formed fibrils priming. CONCLUSIONS: Overall, our findings indicate that LRRK2 kinase activity is a key regulator of PKA signaling and suggest PDE4 as a putative LRRK2 effector in microglia. In addition, our observations suggest that LRRK2 G2019S may favor the transition of microglia toward an overactive state, which could widely contribute to the progression of the pathology in LRRK2-related PD.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Análise de Variância , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Linhagem Celular Transformada , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Inibidores Enzimáticos/farmacologia , Regulação Enzimológica da Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Imunoprecipitação , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Camundongos , Mutação/genética , NF-kappa B/metabolismo , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , RNA Mensageiro , Transfecção
6.
Proc Natl Acad Sci U S A ; 112(45): 13910-5, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26508630

RESUMO

Forkhead box g1 (Foxg1) is a nuclear-cytosolic transcription factor essential for the forebrain development and involved in neurodevelopmental and cancer pathologies. Despite the importance of this protein, little is known about the modalities by which it exerts such a large number of cellular functions. Here we show that a fraction of Foxg1 is localized within the mitochondria in cell lines, primary neuronal or glial cell cultures, and in the mouse cortex. Import of Foxg1 in isolated mitochondria appears to be membrane potential-dependent. Amino acids (aa) 277-302 were identified as critical for mitochondrial localization. Overexpression of full-length Foxg1 enhanced mitochondrial membrane potential (ΔΨm) and promoted mitochondrial fission and mitosis. Conversely, overexpression of the C-term Foxg1 (aa 272-481), which is selectively localized in the mitochondrial matrix, enhanced organelle fusion and promoted the early phase of neuronal differentiation. These findings suggest that the different subcellular localizations of Foxg1 control the machinery that brings about cell differentiation, replication, and bioenergetics, possibly linking mitochondrial functions to embryonic development and pathological conditions.


Assuntos
Diferenciação Celular , Metabolismo Energético , Fatores de Transcrição Forkhead/metabolismo , Mitocôndrias/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Linhagem Celular , Fatores de Transcrição Forkhead/genética , Proteínas de Fluorescência Verde/genética , Potencial da Membrana Mitocondrial , Camundongos , Proteínas do Tecido Nervoso/genética
7.
J Physiol ; 592(2): 305-12, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23858012

RESUMO

While mitochondrial Ca(2+) homeostasis has been studied for several decades and many of the functional roles of Ca(2+) accumulation within the matrix have been at least partially clarified, the possibility of modulation of the organelle functions by cAMP remains largely unknown. In this contribution we briefly summarize the key aspects of Ca(2+) and cAMP signalling pathways in mitochondria. In particular, we focus on recent findings concerning the discovery of an autonomous cAMP toolkit within the mitochondrial matrix, its crossroad with mitochondrial Ca(2+) signalling and its role in controlling ATP synthesis. The discovery of a cAMP signalling, and the demonstration of a cross-talk between cAMP and Ca(2+) inside mitochondria, open the way to a re-evaluation of these organelles as integrators of multiple second messengers. A description of the main methods presently available to measure Ca(2+) and cAMP in mitochondria of living cells with genetically encoded probes is also presented.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , AMP Cíclico/metabolismo , Mitocôndrias/metabolismo , Trifosfato de Adenosina/biossíntese , Animais , Humanos , Microscopia de Fluorescência/métodos
8.
Nat Commun ; 14(1): 5521, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684224

RESUMO

The second messenger cyclic AMP regulates many nuclear processes including transcription, pre-mRNA splicing and mitosis. While most functions are attributed to protein kinase A, accumulating evidence suggests that not all nuclear cyclic AMP-dependent effects are mediated by this kinase, implying that other effectors may be involved. Here we explore the nuclear roles of Exchange Protein Activated by cyclic AMP 1. We find that it enters the nucleus where forms reversible biomolecular condensates in response to cyclic AMP. This phenomenon depends on intrinsically disordered regions present at its amino-terminus and is independent of protein kinase A. Finally, we demonstrate that nuclear Exchange Protein Activated by cyclic AMP 1 condensates assemble at genomic loci on chromosome 6 in the proximity of Histone Locus Bodies and promote the transcription of a histone gene cluster. Collectively, our data reveal an unexpected mechanism through which cyclic AMP contributes to nuclear spatial compartmentalization and promotes the transcription of specific genes.


Assuntos
AMP Cíclico , Histonas , Histonas/genética , Núcleo Celular , Proteínas Nucleares , Proteínas Quinases Dependentes de AMP Cíclico
9.
Redox Biol ; 68: 102962, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38029455

RESUMO

Pancreatic ductal adenocarcinoma (PDA) cells reprogram both mitochondrial and lysosomal functions to support growth. At the same time, this causes significant dishomeostasis of free radicals. While this is compensated by the upregulation of detoxification mechanisms, it also represents a potential vulnerability. Here we demonstrate that PDA cells are sensitive to the inhibition of the mevalonate pathway (MVP), which supports the biosynthesis of critical antioxidant intermediates and protect from ferroptosis. We attacked the susceptibility of PDA cells to ferroptotic death with selenorganic compounds, including dibenzyl diselenide (DBDS) that exhibits potent pro-oxidant properties and inhibits tumor growth in vitro and in vivo. DBDS treatment induces the mobilization of iron from mitochondria enabling uncontrolled lipid peroxidation. Finally, we showed that DBDS and statins act synergistically to promote ferroptosis and provide evidence that combined treatment is a viable strategy to combat PDA.


Assuntos
Ferroptose , Neoplasias Pancreáticas , Selênio , Humanos , Pâncreas , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Peroxidação de Lipídeos , Neoplasias Pancreáticas
10.
J Biol Chem ; 286(48): 41520-41529, 2011 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-21965681

RESUMO

Identification of the signaling pathways that regulate cyclic nucleotide microdomains is essential to our understanding of cardiac physiology and pathophysiology. Although there is growing evidence that the plasma membrane Ca(2+)/calmodulin-dependent ATPase 4 (PMCA4) is a regulator of neuronal nitric-oxide synthase, the physiological consequence of this regulation is unclear. We therefore tested the hypothesis that PMCA4 has a key structural role in tethering neuronal nitric-oxide synthase to a highly compartmentalized domain in the cardiac cell membrane. This structural role has functional consequences on cAMP and cGMP signaling in a PMCA4-governed microdomain, which ultimately regulates cardiac contractility. In vivo contractility and calcium amplitude were increased in PMCA4 knock-out animals (PMCA4(-/-)) with no change in diastolic relaxation or the rate of calcium decay, showing that PMCA4 has a function distinct from beat-to-beat calcium transport. Surprisingly, in PMCA4(-/-), over 36% of membrane-associated neuronal nitric-oxide synthase (nNOS) protein and activity was delocalized to the cytosol with no change in total nNOS protein, resulting in a significant decrease in microdomain cGMP, which in turn led to a significant elevation in local cAMP levels through a decrease in PDE2 activity (measured by FRET-based sensors). This resulted in increased L-type calcium channel activity and ryanodine receptor phosphorylation and hence increased contractility. In the heart, in addition to subsarcolemmal calcium transport, PMCA4 acts as a structural molecule that maintains the spatial and functional integrity of the nNOS signaling complex in a defined microdomain. This has profound consequences for the regulation of local cyclic nucleotide and hence cardiac ß-adrenergic signaling.


Assuntos
AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Microdomínios da Membrana/enzimologia , Complexos Multienzimáticos/metabolismo , Proteínas Musculares/metabolismo , Contração Miocárdica/fisiologia , Miócitos Cardíacos/enzimologia , Óxido Nítrico Sintase Tipo I/metabolismo , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Animais , Cálcio/metabolismo , GMP Cíclico/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Transporte de Íons/fisiologia , Microdomínios da Membrana/genética , Camundongos , Camundongos Knockout , Complexos Multienzimáticos/genética , Proteínas Musculares/genética , Óxido Nítrico Sintase Tipo I/genética , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , Transdução de Sinais/fisiologia
11.
Endocr Relat Cancer ; 29(5): 273-284, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35298396

RESUMO

The improper expression of glucose-dependent insulinotropic polypeptide receptor (GIPR) and the GIP/GIPR axis activation has been increasingly recognized in endocrine tumors, with a potential diagnostic and prognostic value. A high tumor-to-normal tissue ratio (T/N ratio) of GIPR was reported both in humans' and in rats' medullary thyroid cancer (MTC), suggesting a direct link between the neoplastic transformation and the mechanism of receptor overexpression. In this study, we evaluated the potential diagnostic and prognostic significance of GIPR expression in a large cohort of MTC patients by correlating GIPR mRNA steady-state levels to clinical phenotypes. The molecular effect of GIP/GIPR axis stimulation in MTC-derived cells was also determined. We detected GIPR expression in ~80% of tumor specimens, especially in sporadic, larger, advanced-stage cancers with higher Ki-67 values. GIPR stimulation induced cAMP elevation in MTC-derived cells and a small but significant fluctuation in Ca2+, both likely associated with increased calcitonin secretion. On the contrary, the effects on PI3K-Akt and MAPK-ERK1/2 signaling pathways were marginal. To conclude, our data confirm the high T/N GIPR ratio in MTC tumors and suggest that it may represent an index for the degree of advancement of the malignant process. We have also observed a functional coupling between GIP/GIPR axis and calcitonin secretion in MTC models. However, the molecular mechanisms underlying this process and the possible implication of GIP/GIPR axis activation in MTC diagnosis and prognosis need further evaluation.


Assuntos
Polipeptídeo Inibidor Gástrico , Neoplasias da Glândula Tireoide , Calcitonina , Carcinoma Neuroendócrino , Polipeptídeo Inibidor Gástrico/genética , Polipeptídeo Inibidor Gástrico/metabolismo , Polipeptídeo Inibidor Gástrico/farmacologia , Humanos , Fosfatidilinositol 3-Quinases , Receptores dos Hormônios Gastrointestinais , Neoplasias da Glândula Tireoide/genética
12.
J Cell Biol ; 175(3): 441-51, 2006 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-17088426

RESUMO

There is a growing appreciation that the cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) signaling pathway is organized to form transduction units that function to deliver specific messages. Such organization results in the local activation of PKA subsets through the generation of confined intracellular gradients of cAMP, but the mechanisms responsible for limiting the diffusion of cAMP largely remain to be clarified. In this study, by performing real-time imaging of cAMP, we show that prostaglandin 1 stimulation generates multiple contiguous, intracellular domains with different cAMP concentration in human embryonic kidney 293 cells. By using pharmacological and genetic manipulation of phosphodiesterases (PDEs), we demonstrate that compartmentalized PDE4B and PDE4D are responsible for selectively modulating the concentration of cAMP in individual subcellular compartments. We propose a model whereby compartmentalized PDEs, rather than representing an enzymatic barrier to cAMP diffusion, act as a sink to drain the second messenger from discrete locations, resulting in multiple and simultaneous domains with different cAMP concentrations irrespective of their distance from the site of cAMP synthesis.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Alprostadil/farmacologia , AMP Cíclico/metabolismo , Citosol/efeitos dos fármacos , Sistemas do Segundo Mensageiro/efeitos dos fármacos , 3',5'-AMP Cíclico Fosfodiesterases/genética , Técnicas Biossensoriais , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3 , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , Citosol/metabolismo , Difusão , Ativação Enzimática/efeitos dos fármacos , Transferência Ressonante de Energia de Fluorescência , Proteínas de Fluorescência Verde/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Microscopia Confocal , Sinais Direcionadores de Proteínas/genética , Interferência de RNA , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Tempo , Transfecção
13.
Autophagy ; 17(6): 1563-1564, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33971785

RESUMO

Macroautophagy/autophagy is the cellular process responsible for the elimination and recycling of aggregated proteins and damaged organelles. Whereas autophagy is strictly regulated by several signaling cascades, the link between this process and the subcellular distribution of its regulatory pathways remains to be established. Our recent work suggests that the compartmentalization of PRKA/PKA (protein kinase cAMP-activated) determines its effects on autophagy. We found that increased cAMP levels generate dramatically different PRKA activity "signatures" mainly dependent on the actions of phosphatases and the distribution of the PRKA holoenzymes containing type II regulatory subunits (PRKAR2A and PRKAR2B; RII). In this punctum we discuss how compartmentalized PRKA signaling events are generated and affect the autophagic flux in specific cell types.


Assuntos
Autofagia , Transdução de Sinais , Monoéster Fosfórico Hidrolases , Proteínas Quinases/metabolismo , Proteínas
14.
Cell Calcium ; 93: 102320, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33296837

RESUMO

Cytosolic cAMP signalling in live cells has been extensively investigated in the past, while only in the last decade the existence of an intramitochondrial autonomous cAMP homeostatic system began to emerge. Thanks to the development of novel tools to investigate cAMP dynamics and cAMP/PKA-dependent phosphorylation within the matrix and in other mitochondrial compartments, it is now possible to address directly and in intact living cells a series of questions that until now could be addressed only by indirect approaches, in isolated organelles or through subcellular fractionation studies. In this contribution we discuss the mechanisms that regulate cAMP dynamics at the surface and inside mitochondria, and its crosstalk with organelle Ca2+ handling. We then address a series of still unsolved questions, such as the intramitochondrial localization of key elements of the cAMP signaling toolkit, e.g., adenylate cyclases, phosphodiesterases, protein kinase A (PKA) and Epac. Finally, we discuss the evidence for and against the existence of an intramitochondrial PKA pool and the functional role of cAMP increases within the organelle matrix.


Assuntos
AMP Cíclico/metabolismo , Mitocôndrias/metabolismo , Transdução de Sinais , Animais , Sinalização do Cálcio , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , Fosforilação
15.
Cell Death Differ ; 28(8): 2436-2449, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33742135

RESUMO

Autophagy is a highly regulated degradative process crucial for maintaining cell homeostasis. This important catabolic mechanism can be nonspecific, but usually occurs with fine spatial selectivity (compartmentalization), engaging only specific subcellular sites. While the molecular machines driving autophagy are well understood, the involvement of localized signaling events in this process is not well defined. Among the pathways that regulate autophagy, the cyclic AMP (cAMP)/protein kinase A (PKA) cascade can be compartmentalized in distinct functional units called microdomains. However, while it is well established that, depending on the cell type, cAMP can inhibit or promote autophagy, the role of cAMP/PKA microdomains has not been tested. Here we show not only that the effects on autophagy of the same cAMP elevation differ in different cell types, but that they depend on a highly complex sub-compartmentalization of the signaling cascade. We show in addition that, in HT-29 cells, in which autophagy is modulated by cAMP rising treatments, PKA activity is strictly regulated in space and time by phosphatases, which largely prevent the phosphorylation of soluble substrates, while membrane-bound targets are less sensitive to the action of these enzymes. Interestingly, we also found that the subcellular distribution of PKA type-II regulatory PKA subunits hinders the effect of PKA on autophagy, while displacement of type-I regulatory PKA subunits has no effect. Our data demonstrate that local PKA activity can occur independently of local cAMP concentrations and provide strong evidence for a link between localized PKA signaling events and autophagy.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Animais , Autofagia , Camundongos , Fosforilação , Transfecção
16.
Cells ; 10(2)2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33671541

RESUMO

The cyclic AMP (cAMP) signalling cascade is necessary for cell homeostasis and plays important roles in many processes. This is particularly relevant during ageing and age-related diseases, where drastic changes, generally decreases, in cAMP levels have been associated with the progressive decline in overall cell function and, eventually, the loss of cellular integrity. The functional relevance of reduced cAMP is clearly supported by the finding that increases in cAMP levels can reverse some of the effects of ageing. Nevertheless, despite these observations, the molecular mechanisms underlying the dysregulation of cAMP signalling in ageing are not well understood. Compartmentalization is widely accepted as the modality through which cAMP achieves its functional specificity; therefore, it is important to understand whether and how this mechanism is affected during ageing and to define which is its contribution to this process. Several animal models demonstrate the importance of specific cAMP signalling components in ageing, however, how age-related changes in each of these elements affect the compartmentalization of the cAMP pathway is largely unknown. In this review, we explore the connection of single components of the cAMP signalling cascade to ageing and age-related diseases whilst elaborating the literature in the context of cAMP signalling compartmentalization.


Assuntos
AMP Cíclico/metabolismo , Doenças Neurodegenerativas/genética , Envelhecimento , Humanos , Transdução de Sinais
17.
Oxid Med Cell Longev ; 2021: 7658501, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34992716

RESUMO

Pterostilbene (Pt) is a potentially beneficial plant phenol. In contrast to many other natural compounds (including the more celebrated resveratrol), Pt concentrations producing significant effects in vitro can also be reached with relative ease in vivo. Here we focus on some of the mechanisms underlying its activity, those involved in the activation of transcription factor EB (TFEB). A set of processes leading to this outcome starts with the generation of ROS, attributed to the interaction of Pt with complex I of the mitochondrial respiratory chain, and spreads to involve Ca2+ mobilization from the ER/mitochondria pool, activation of CREB and AMPK, and inhibition of mTORC1. TFEB migration to the nucleus results in the upregulation of autophagy and lysosomal and mitochondrial biogenesis. Cells exposed to several µM levels of Pt experience a mitochondrial crisis, an indication for using low doses in therapeutic or nutraceutical applications. Pt afforded significant functional improvements in a zebrafish embryo model of ColVI-related myopathy, a pathology which also involves defective autophagy. Furthermore, long-term supplementation with Pt reduced body weight gain and increased transcription levels of Ppargc1a and Tfeb in a mouse model of diet-induced obesity. These in vivo findings strengthen the in vitro observations and highlight the therapeutic potential of this natural compound.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Estilbenos/metabolismo , Animais , Modelos Animais de Doenças , Células HeLa , Humanos , Camundongos , Fatores de Transcrição , Peixe-Zebra
18.
Circ Res ; 103(8): 836-44, 2008 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-18757829

RESUMO

Protein kinase A (PKA) is a key regulatory enzyme that, on activation by cAMP, modulates a wide variety of cellular functions. PKA isoforms type I and type II possess different structural features and biochemical characteristics, resulting in nonredundant function. However, how different PKA isoforms expressed in the same cell manage to perform distinct functions on activation by the same soluble intracellular messenger, cAMP, remains to be established. Here, we provide a mechanism for the different function of PKA isoforms subsets in cardiac myocytes and demonstrate that PKA-RI and PKA-RII, by binding to AKAPs (A kinase anchoring proteins), are tethered to different subcellular locales, thus defining distinct intracellular signaling compartments. Within such compartments, PKA-RI and PKA-RII respond to distinct, spatially restricted cAMP signals generated in response to specific G protein-coupled receptor agonists and regulated by unique subsets of the cAMP degrading phosphodiesterases. The selective activation of individual PKA isoforms thus leads to phosphorylation of unique subsets of downstream targets.


Assuntos
Proteína Quinase Tipo II Dependente de AMP Cíclico/metabolismo , Proteína Quinase Tipo I Dependente de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Miócitos Cardíacos/enzimologia , Transdução de Sinais , Proteínas de Ancoragem à Quinase A/metabolismo , Animais , Animais Recém-Nascidos , Técnicas Biossensoriais , Células CHO , Proteínas de Ligação ao Cálcio/metabolismo , Cricetinae , Cricetulus , Proteína Quinase Tipo I Dependente de AMP Cíclico/genética , Proteína Quinase Tipo II Dependente de AMP Cíclico/genética , Recuperação de Fluorescência Após Fotodegradação , Transferência Ressonante de Energia de Fluorescência , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Diester Fosfórico Hidrolases/metabolismo , Fosforilação , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Transfecção , Troponina I/metabolismo
19.
Prog Biophys Mol Biol ; 154: 30-38, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31266653

RESUMO

Cyclic 3'-5' adenosine monophosphate (cAMP) is a key modulator of cardiac function. Thanks to the sophisticated organization of its pathway in distinct functional units called microdomains, cAMP is involved in the regulation of both inotropy and chronotropy as well as transcription and cardiac death. While visualization of cAMP microdomains can be achieved thanks to cAMP-sensitive FRET-based sensors, the molecular mechanisms through which cAMP-generating stimuli are coupled to distinct functional outcomes are not well understood. One possibility is that each stimulus activates multiple microdomains in order to generate a spatiotemporal code that translates into function. To test this hypothesis here we propose a series of experimental protocols that allow to simultaneously follow cAMP or Protein Kinase A (PKA)-dependent phosphorylation in different subcellular compartments of living cells. We investigate the responses of ß Adrenergic receptors (ß1AR and ß2AR) challenged with selective drugs that enabled us to measure the actions of each receptor independently. At the whole cell level, we used a combination of co-culture with selective ßAR stimulation and were able to molecularly separate cardiac fibroblasts from neonatal rat ventricular myocytes based on their cAMP responses. On the other hand, at the subcellular level, these experimental protocols allowed us to dissect the relative weight of ß1 and ß2 adrenergic receptors on cAMP signalling at the cytosol and outer mitochondrial membrane of NRVMs. We propose that experimental procedures that allow the collection of multiparametric data are necessary in order to understand the molecular mechanisms underlying the coupling between extracellular signals and cellular responses.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Receptores Adrenérgicos beta 1/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Transdução de Sinais , Linhagem Celular , AMP Cíclico/metabolismo , Espaço Extracelular/metabolismo , Humanos , Membranas Mitocondriais/metabolismo , Miócitos Cardíacos/citologia
20.
Cell Metab ; 31(5): 987-1003.e8, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32315597

RESUMO

While endothelial cell (EC) function is influenced by mitochondrial metabolism, the role of mitochondrial dynamics in angiogenesis, the formation of new blood vessels from existing vasculature, is unknown. Here we show that the inner mitochondrial membrane mitochondrial fusion protein optic atrophy 1 (OPA1) is required for angiogenesis. In response to angiogenic stimuli, OPA1 levels rapidly increase to limit nuclear factor kappa-light-chain-enhancer of activated B cell (NFκB) signaling, ultimately allowing angiogenic genes expression and angiogenesis. Endothelial Opa1 is indeed required in an NFκB-dependent pathway essential for developmental and tumor angiogenesis, impacting tumor growth and metastatization. A first-in-class small molecule-specific OPA1 inhibitor confirms that EC Opa1 can be pharmacologically targeted to curtail tumor growth. Our data identify Opa1 as a crucial component of physiological and tumor angiogenesis.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Neovascularização Patológica/metabolismo , Animais , Células Cultivadas , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , NF-kappa B/metabolismo , Transdução de Sinais , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA