Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 15158, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34312403

RESUMO

Inhibitory control is the ability to suppress inappropriate movements and unwanted actions, allowing to regulate impulses and responses. This ability can be measured via the Stop Signal Task, which provides a temporal index of response inhibition, namely the stop signal reaction time (SSRT). At the neural level, Transcranial Magnetic Stimulation (TMS) allows to investigate motor inhibition within the primary motor cortex (M1), such as the cortical silent period (CSP) which is an index of GABAB-mediated intracortical inhibition within M1. Although there is strong evidence that intracortical inhibition varies during action stopping, it is still not clear whether differences in the neurophysiological markers of intracortical inhibition contribute to behavioral differences in actual inhibitory capacities. Hence, here we explored the relationship between intracortical inhibition within M1 and behavioral response inhibition. GABABergic-mediated inhibition in M1 was determined by the duration of CSP, while behavioral inhibition was assessed by the SSRT. We found a significant positive correlation between CSP's duration and SSRT, namely that individuals with greater levels of GABABergic-mediated inhibition seem to perform overall worse in inhibiting behavioral responses. These results support the assumption that individual differences in intracortical inhibition are mirrored by individual differences in action stopping abilities.


Assuntos
Córtex Motor/fisiologia , Adulto , Eletromiografia , Potencial Evocado Motor/fisiologia , Feminino , Humanos , Individualidade , Masculino , Movimento/fisiologia , Inibição Neural/fisiologia , Tempo de Reação/fisiologia , Análise e Desempenho de Tarefas , Estimulação Magnética Transcraniana , Adulto Jovem
2.
Sci Rep ; 11(1): 20533, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34654814

RESUMO

Functional connectivity (FC) of brain networks dynamically fluctuates during both rest and task execution. Individual differences in dynamic FC have been associated with several cognitive and behavioral traits. However, whether dynamic FC also contributes to sensorimotor representations guiding body-environment interactions, such as the representation of peripersonal space (PPS), is currently unknown. PPS is the space immediately surrounding the body and acts as a multisensory interface between the individual and the environment. We used an audio-tactile task with approaching sounds to map the individual PPS extension, and fMRI to estimate the background FC. Specifically, we analyzed FC values for each stimulus type (near and far space) and its across-trial variability. FC was evaluated between task-relevant nodes of two fronto-parietal networks (the Dorsal Attention Network, DAN, and the Fronto-Parietal Network, FPN) and a key PPS region in the premotor cortex (PM). PM was significantly connected to specific task-relevant nodes of the DAN and the FPN during the audio-tactile task, and FC was stronger while processing near space, as compared to far space. At the individual level, less PPS extension was associated with stronger premotor-parietal FC during processing of near space, while the across-trial variability of premotor-parietal and premotor-frontal FC was higher during the processing of far space. Notably, only across-trial FC variability captured the near-far modulation of space processing. Our findings indicate that PM connectivity with task-relevant frontal and parietal regions and its dynamic changes participate in the mechanisms that enable PPS representation, in agreement with the idea that neural variability plays a crucial role in plastic and dynamic sensorimotor representations.


Assuntos
Lobo Frontal/fisiologia , Lobo Parietal/fisiologia , Espaço Pessoal , Percepção Espacial/fisiologia , Adulto , Feminino , Lobo Frontal/diagnóstico por imagem , Voluntários Saudáveis , Humanos , Individualidade , Imageamento por Ressonância Magnética , Masculino , Lobo Parietal/diagnóstico por imagem , Adulto Jovem
3.
J Psychiatr Res ; 134: 208-214, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33418447

RESUMO

According to the dimensional approach to psychosis, there is a continuum from low schizotypy to schizophrenia patients. The temporal aspect of sensory processing seems to be compromised across such continuum, as suggested by different studies separately investigating unisensory or multisensory domains. Most of these studies have so far focused primarily on the temporal processing of visual and auditory stimuli, either in schizotypy or schizophrenia, while leaving the tactile domain and the integration of touch with other senses mostly unexplored. Given the relevance of body-related perceptual abnormalities for psychosis proneness, we aimed at filling this gap in the literature across two studies. We asked participants with increasing levels of schizotypy (study 1) and schizophrenia patients (study 2) to perform three simultaneity judgement tasks: a unimodal tactile task, a unimodal auditory task and a bimodal audio-tactile task. Each task allowed estimating a simultaneity range (SR), as a proxy of the individual tolerance to asynchronies in the tactile, auditory and audio-tactile domains, respectively. Results showed larger SRs as the level of schizotypy increases. Specifically, the linear effect of schizotypy levels on the audio-tactile task was stronger than on the auditory task, which in turn was greater than the effect on the tactile task (study 1). Differently, schizophrenia patients showed larger SRs than controls in all the three tasks (study 2). The current study is the first empirical investigation across the continuum from low schizotypy to schizophrenia of the tolerance to asynchronies in the processing of external (auditory) and body-related (tactile) inputs.


Assuntos
Esquizofrenia , Percepção do Tempo , Percepção do Tato , Estimulação Acústica , Percepção Auditiva , Humanos , Tato , Percepção Visual
4.
Neuropsychologia ; 156: 107823, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33705822

RESUMO

The peripersonal space (PPS) is a multisensory and sensorimotor interface between our body and the environment. The location of PPS boundary is not fixed. Rather, it adapts to the environmental context and differs greatly across individuals. Recent studies have started to unveil the neural correlates of individual differences in PPS extension; however, this picture is not clear yet. Here, we used approaching auditory stimuli and magnetoencephalography to capture the individual boundary of PPS and examine its neural underpinnings. In particular, building upon previous studies from our own group, we investigated the possible contribution of an intrinsic feature of the brain, that is the "resting state" functional connectivity, to the individual differences in PPS extension and the frequency specificity of this contribution. Specifically, we focused on the activity synchronized to the premotor cortex, where multisensory neurons encoding PPS have been described. Results showed that the stronger the connectivity between left premotor cortex (lPM) and a set of fronto-parietal, sensorimotor regions in the right and left hemisphere, the wider the extension of the PPS. Strikingly, such a correlation was observed only in the beta-frequency band. Overall, our results suggest that the individual extension of the PPS is coded in spatially- and spectrally-specific resting state functional links.


Assuntos
Córtex Motor , Espaço Pessoal , Adaptação Fisiológica , Humanos , Individualidade , Lobo Parietal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA