Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Mol Psychiatry ; 28(6): 2433-2444, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37198260

RESUMO

Alzheimer's disease (AD), the leading cause of dementia in older adults, is a double proteinopathy characterized by amyloid-ß (Aß) and tau pathology. Despite enormous efforts that have been spent in the last decades to find effective therapies, late pharmacological interventions along the course of the disease, inaccurate clinical methodologies in the enrollment of patients, and inadequate biomarkers for evaluating drug efficacy have not allowed the development of an effective therapeutic strategy. The approaches followed so far for developing drugs or antibodies focused solely on targeting Aß or tau protein. This paper explores the potential therapeutic capacity of an all-D-isomer synthetic peptide limited to the first six amino acids of the N-terminal sequence of the A2V-mutated Aß, Aß1-6A2V(D), that was developed following the observation of a clinical case that provided the background for its development. We first performed an in-depth biochemical characterization documenting the capacity of Aß1-6A2V(D) to interfere with the aggregation and stability of tau protein. To tackle Aß1-6A2V(D) in vivo effects against a neurological decline in genetically predisposed or acquired high AD risk mice, we tested its effects in triple transgenic animals harboring human PS1(M146 V), APP(SW), and MAPT(P301L) transgenes and aged wild-type mice exposed to experimental traumatic brain injury (TBI), a recognized risk factor for AD. We found that Aß1-6A2V(D) treatment in TBI mice improved neurological outcomes and reduced blood markers of axonal damage. Exploiting the C. elegans model as a biosensor of amyloidogenic proteins' toxicity, we observed a rescue of locomotor defects in nematodes exposed to the brain homogenates from TBI mice treated with Aß1-6A2V(D) compared to TBI controls. By this integrated approach, we demonstrate that Aß1-6A2V(D) not only impedes tau aggregation but also favors its degradation by tissue proteases, confirming that this peptide interferes with both Aß and tau aggregation propensity and proteotoxicity.


Assuntos
Doença de Alzheimer , Lesões Encefálicas Traumáticas , Humanos , Animais , Camundongos , Idoso , Proteínas tau/metabolismo , Caenorhabditis elegans/metabolismo , Fragmentos de Peptídeos/metabolismo , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Camundongos Transgênicos , Modelos Animais de Doenças , Precursor de Proteína beta-Amiloide/metabolismo
2.
Brain ; 146(8): 3289-3300, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36883639

RESUMO

The current classification of sporadic Creutzfeldt-Jakob disease identifies six major subtypes mainly defined by the combination of the genotype at polymorphic codon 129 (methionine/M or valine/V) of the prion protein gene and the type (1 or 2) of misfolded prion protein accumulating in the brain (e.g. MM1, MM2, MV1, MV2, etc.). Here, we systematically characterized the clinical and histo-molecular features associated with the third prevalent subtype, the MV2 subtype with kuru plaques (MV2K), in the most extensive series collected to date. We evaluated neurological histories, cerebrospinal biomarkers, brain MRI and EEG results in 126 patients. The histo-molecular assessment included misfolded prion protein typing, standard histologic staining and immunohistochemistry for prion protein in several brain areas. We also investigated the prevalence and topographic extent of coexisting MV2-cortical features, the number of cerebellar kuru plaques and their effect on clinical phenotype. Systematic regional typing revealed a western blot profile of misfolded prion protein comprising a doublet of 19 and 20 kDa unglycosylated fragments, with the former more prominent in neocortices and the latter in the deep grey nuclei. The 20/19 kDa fragment ratio positively correlated with the number of cerebellar kuru plaques. The mean disease duration was exceedingly longer than in the typical MM1 subtype (18.0 versus 3.4 months). Disease duration correlated positively with the severity of pathologic change and the number of cerebellar kuru plaques. At the onset and early stages, patients manifested prominent, often mixed, cerebellar symptoms and memory loss, variably associated with behavioural/psychiatric and sleep disturbances. The cerebrospinal fluid prion real-time quaking-induced conversion assay was positive in 97.3% of cases, while 14-3-3 protein and total-tau positive tests were 52.6 and 75.9%. Brain diffusion-weighted MRI showed hyperintensity of the striatum, cerebral cortex and thalamus in 81.4, 49.3 and 33.8% of cases, and a typical profile in 92.2%. Mixed histotypes (MV2K + MV2-cortical) showed an abnormal cortical signal more frequently than the pure MV2K (64.7 versus 16.7%, P = 0.007). EEG revealed periodic sharp-wave complexes in only 8.7% of participants. These results further establish MV2K as the most common 'atypical' subtype of sporadic Creutzfeldt-Jakob disease, showing a clinical course that often challenges the early diagnosis. The plaque-type aggregation of the misfolded prion protein accounts for most of the atypical clinical features. Nonetheless, our data strongly suggest that the consistent use of the real-time quaking-induced conversion assay and brain diffusion-weighted MRI allows an accurate early clinical diagnosis in most patients.


Assuntos
Síndrome de Creutzfeldt-Jakob , Kuru , Neocórtex , Príons , Humanos , Síndrome de Creutzfeldt-Jakob/diagnóstico por imagem , Síndrome de Creutzfeldt-Jakob/genética , Kuru/metabolismo , Kuru/patologia , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Encéfalo/patologia , Príons/genética , Fenótipo , Neocórtex/patologia
3.
Int J Mol Sci ; 25(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38256197

RESUMO

The accumulation of protein aggregates defines distinct, yet overlapping pathologies such as Alzheimer's disease (AD), dementia with Lewy bodies (DLB), and frontotemporal dementia (FTD). In this study, we investigated ATG5, UBQLN2, ULK1, and LC3 concentrations in 66 brain specimens and 120 plasma samples from AD, DLB, FTD, and control subjects (CTRL). Protein concentration was measured with ELISA kits in temporal, frontal, and occipital cortex specimens of 32 AD, 10 DLB, 10 FTD, and 14 CTRL, and in plasma samples of 30 AD, 30 DLB, 30 FTD, and 30 CTRL. We found alterations in ATG5, UBQLN2, ULK1, and LC3 levels in patients; ATG5 and UBQLN2 levels were decreased in both brain specimens and plasma samples of patients compared to those of the CTRL, while LC3 levels were increased in the frontal cortex of DLB and FTD patients. In this study, we demonstrate alterations in different steps related to ATG5, UBQLN2, and LC3 autophagy pathways in DLB and FTD patients. Molecular alterations in the autophagic processes could play a role in a shared pathway involved in the pathogenesis of neurodegeneration, supporting the hypothesis of a common molecular mechanism underlying major neurodegenerative dementias and suggesting different potential therapeutic targets in the autophagy pathway for these disorders.


Assuntos
Doença de Alzheimer , Demência Frontotemporal , Doença por Corpos de Lewy , Doença de Pick , Humanos , Autofagia , Proteínas Relacionadas à Autofagia , Proteínas Adaptadoras de Transdução de Sinal
4.
Mol Psychiatry ; 27(12): 5227-5234, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36028569

RESUMO

Alzheimer's disease (AD) is an irreversible neurodegenerative disorder that affects millions of people worldwide. AD pathogenesis is intricate. It primarily involves two main molecular players-amyloid-ß (Aß) and tau-which actually have an intrinsic trend to generate molecular assemblies that are toxic to neurons. Incomplete knowledge of the molecular mechanisms inducing the onset and sustaining the progression of the disease, as well as the lack of valid models to fully recapitulate the pathogenesis of human disease, have until now hampered the development of a successful therapy for AD. The overall experience with clinical trials with a number of potential drugs-including the recent outcomes of studies with monoclonal antibodies against Aß-seems to indicate that Aß-targeting is not effective if it is not accompanied by an efficient challenge of Aß neurotoxic properties. We took advantage from the discovery of a naturally-occurring variant of Aß (AßA2V) that has anti-amyloidogenic properties, and designed a novel bio-inspired strategy for AD based on the intranasal delivery of a six-mer peptide (Aß1-6A2V) retaining the anti-amyloidogenic abilities of the full-length AßA2V variant. This approach turned out to be effective in preventing the aggregation of wild type Aß and averting the synaptic damage associated with amyloidogenesis in a mouse model of AD. The results of our preclinical studies inspired by a protective model already existing in nature, that is the human heterozygous AßA2V carriers which seem to be protected from AD, open the way to an unprecedented and promising approach for the prevention of the disease in humans.


Assuntos
Doença de Alzheimer , Amiloide , Animais , Camundongos , Doença de Alzheimer/patologia , Doença de Alzheimer/terapia , Amiloide/antagonistas & inibidores , Peptídeos beta-Amiloides/uso terapêutico , Modelos Animais de Doenças
5.
Eur J Neurol ; 29(11): 3139-3146, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35789031

RESUMO

BACKGROUND AND PURPOSE: Cerebral amyloid angiopathy (CAA) has been associated with a variety of neurodegenerative disorders, included prion diseases and Alzheimer's disease; its pathophysiology is still largely unknown. We report the case of an 80-year-old man with rapidly progressive dementia and neuroimaging features consistent with CAA carrying two genetic defects in the PRNP and SORL1 genes. METHODS: Neurological examination, brain magnetic resonance imaging (MRI), electroencephalographic-electromyographic (EEG-EMG) polygraphy, and analysis of 14-3-3 and tau proteins, Aß40, and Aß42 in the cerebrospinal fluid (CSF) were performed. The patient underwent a detailed genetic study by next generation sequencing analysis. RESULTS: The patient presented with progressive cognitive dysfunction, generalized myoclonus, and ataxia. Approximately 9 months after symptom onset, he was bed-bound, almost mute, and akinetic. Brain MRI was consistent with CAA. CSF analysis showed high levels of t-tau and p-tau, decreased Aß42, decreased Aß42/Aß40 ratio, and absence of 14.3.3 protein. EEG-EMG polygraphy demonstrated diffuse slowing, frontal theta activity, and generalized spike-waves related to upper limb myoclonus induced by intermittent photic stimulation. Genetic tests revealed the presence of the E270K variant in the SORL1 gene and the presence of a single octapeptide repeat insertion in the coding region of the PRNP gene. CONCLUSIONS: The specific pathogenic contribution of the two DNA variations is difficult to determine without neuropathology; among the possible explanations, we discuss the possibility of their link with CAA. Vascular and degenerative pathways actually interact in a synergistic way, and genetic studies may lead to more insight into pathophysiological mechanisms.


Assuntos
Doença de Alzheimer , Angiopatia Amiloide Cerebral , Demência , Mioclonia , Idoso de 80 Anos ou mais , Doença de Alzheimer/complicações , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Angiopatia Amiloide Cerebral/complicações , Demência/complicações , Humanos , Proteínas Relacionadas a Receptor de LDL/genética , Masculino , Proteínas de Membrana Transportadoras/genética , Mutação , Proteínas Priônicas/genética , Proteínas tau/líquido cefalorraquidiano
6.
Alzheimer Dis Assoc Disord ; 36(2): 118-124, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35293381

RESUMO

AIM: Our aim was to evaluate the psychological impact of predictive genetic testing in individuals at-risk for inherited dementia who underwent a structured counseling and testing protocol. METHODS: Participants were healthy at-risk relatives from families with at least one affected patient, in whom a disease-associated genetic variant had been ascertained. A comprehensive psychological assessment (personality, anxiety and depression, quality of life, coping strategies, resilience and health-related beliefs) was administered at baseline, at 6 months and 12 months follow-up. RESULTS: Twenty-four participants from 13 families were included. Sixteen participants underwent blood sampling and genetic analysis; 6 resulted to be carriers of pathogenic variants (1 in PSEN1, 1 in PSEN2, 4 in GRN). Carriers showed higher score on the Resilience Scale for Adults (RSA) - social competence, and on Multidimensional Health Locus of Control - internal, than noncarriers (P=0.03 for both). Ten at-risk relatives who completed the follow-up showed improvement in RSA - planned future (P=0.01) with respect to baseline. DISCUSSION: Our case series showed that at-risk individuals undergoing predictive testing showed benefit on personal life and no detrimental impact on a broad range of psychological outcomes. Higher social skills and lower internal health locus of control in carriers may be an early psychological correlate of preclinical dementia.


Assuntos
Doença de Alzheimer , Demência Frontotemporal , Adulto , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Ansiedade/genética , Ansiedade/psicologia , Demência Frontotemporal/genética , Testes Genéticos , Humanos , Qualidade de Vida
7.
Neurol Sci ; 43(6): 3703-3716, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35088242

RESUMO

BACKGROUND: Rapidly progressive cognitive impairment is a diagnostic criterion in Creutzfeldt-Jakob disease (CJD), but the diagnosis is usually reached when an analysis of cognitive aspects is no longer possible. OBJECTIVE: This study aims to delineate the cognitive phenotypes preceding severe dementia in CJD compared to secondary metabolic encephalopathies (SME) with rapid cognitive impairment. METHODS: Patients with rapidly progressive neurological symptoms underwent neuropsychological evaluation, analysis of cerebrospinal fluid (CSF) and codon 129 polymorphism of the prion protein gene (PRNP), magnetic resonance imaging (MRI), and single positron emission computed tomography (99mTcSPECT). CSF real-time quaking-induced conversion analysis was applied in CJD patients. Based on literature and clinical expertise, cognitive profiles were correlated with brain areas. RESULTS: Thirty-one patients were diagnosed with CJD (n = 17) or SME; 77 cases of CJD were extracted from the literature. In patients with CJD, verbal initiative, lexical search, long-term memory, attention, and abstract reasoning were the most frequently impaired abilities. Cognitive profiles were mainly related to dysfunction in fronto-temporal areas. Furthermore, they were consistent with areas of hypoperfusion detected by 99mTc SPECT in six patients and cortical and subcortical MRI hyperintensities in eight and 14 patients, respectively, and were similar to those described in the literature. In contrast, cognitive profiles were different from those in SME characterized by visuospatial and constructive deficits relating to posterior brain areas. CONCLUSION: In CJD, clinical and neuropsychological analyses outline a salient cognitive phenotype suggestive of fronto-temporal dysfunction preceding severe dementia. This phenotype is different from that observed in other rapidly progressive encephalopathies.


Assuntos
Encefalopatias Metabólicas , Síndrome de Creutzfeldt-Jakob , Príons , Cognição , Síndrome de Creutzfeldt-Jakob/diagnóstico , Síndrome de Creutzfeldt-Jakob/diagnóstico por imagem , Humanos , Fenótipo , Príons/genética
8.
Neurol Sci ; 42(5): 2021-2029, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33006056

RESUMO

BACKGROUND: Alzheimer's disease (AD) is the most common age-related dementia. Besides its typical presentation with amnestic syndrome at onset, atypical AD cases are being increasingly recognized, often in presenile age. OBJECTIVES: To provide an extensive clinical and genetic characterization of six AD patients carrying one or more singular features, including age of onset, atypical phenotype and disease progression rate. By reviewing the pertinent literature and accessing publicly available databases, we aimed to assess the frequency and the significance of the identified genetic variants. METHODS: Biomarkers of amyloid-ß deposition and neurodegeneration were used to establish the in vivo diagnosis of probable AD, in addition to neurological and neuropsychological evaluation, extensive laboratory assays and neuroradiological data. Considering the presenile onset of the majority of the cases, we hypothesized genetically determined AD and performed extensive genetic analyses by both Sanger sequencing and next generation sequencing (NGS). RESULTS: We disclosed two known missense variants, one in PSEN1 and the other in PSEN2, and a novel silent variant in PSEN2. Most notably, we identified several additional variants in other dementia-related genes by NGS. Some of them have never been reported in any control or disease databases, representing variants unique to our cases. CONCLUSIONS: This work underlines the difficulties in reaching a confident in vivo diagnosis in cases of atypical dementia. Moreover, a wider genetic analysis by NGS approach may prove to be useful in specific cases, especially when the study of the so-far known AD causative genes produces negative or conflicting results.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Testes Genéticos , Humanos , Mutação de Sentido Incorreto , Testes Neuropsicológicos , Presenilina-1/genética , Presenilina-2/genética
9.
Int J Mol Sci ; 22(5)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803478

RESUMO

Alzheimer's disease (AD) is increasingly recognized as a highly heterogeneous disorder occurring under distinct clinical and neuropathological phenotypes. Despite the molecular determinants of such variability not being well defined yet, microglial cells may play a key role in this process by releasing distinct pro- and/or anti-inflammatory cytokines, potentially affecting the expression of the disease. We carried out a neuropathological and biochemical analysis on a series of AD brain samples, gathering evidence about the heterogeneous involvement of microglia in AD. The neuropathological studies showed differences concerning morphology, density and distribution of microglial cells among AD brains. Biochemical investigations showed increased brain levels of IL-4, IL-6, IL-13, CCL17, MMP-7 and CXCL13 in AD in comparison with control subjects. The molecular profiling achieved by measuring the brain levels of 25 inflammatory factors known to be involved in neuroinflammation allowed a stratification of the AD patients in three distinct "neuroinflammatory clusters". These findings strengthen the relevance of neuroinflammation in AD pathogenesis suggesting, in particular, that the differential involvement of neuroinflammatory molecules released by microglial cells during the development of the disease may contribute to modulate the characteristics and the severity of the neuropathological changes, driving-at least in part-the AD phenotypic diversity.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Citocinas/metabolismo , Microglia/metabolismo , Doença de Alzheimer/patologia , Encéfalo/patologia , Humanos , Inflamação/metabolismo , Inflamação/patologia , Microglia/patologia
10.
Int J Mol Sci ; 22(24)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34948429

RESUMO

Dysfunctions in the endo-lysosomal system have been hypothesized to underlie neurodegeneration in major neurocognitive disorders due to Alzheimer's disease (AD), Frontotemporal Lobar Degeneration (FTLD), and Lewy body disease (DLB). The aim of this study is to investigate whether these diseases share genetic variability in the endo-lysosomal pathway. In AD, DLB, and FTLD patients and in controls (948 subjects), we performed a targeted sequencing of the top 50 genes belonging to the endo-lysosomal pathway. Genetic analyses revealed (i) four previously reported disease-associated variants in the SORL1 (p.N1246K, p.N371T, p.D2065V) and DNAJC6 genes (p.M133L) in AD, FTLD, and DLB, extending the previous knowledge attesting SORL1 and DNAJC6 as AD- and PD-related genes, respectively; (ii) three predicted null variants in AD patients in the SORL1 (p.R985X in early onset familial AD, p.R1207X) and PPT1 (p.R48X in early onset familial AD) genes, where loss of function is a known disease mechanism. A single variant and gene burden analysis revealed some nominally significant results of potential interest for SORL1 and DNAJC6 genes. Our data highlight that genes controlling key endo-lysosomal processes (i.e., protein sorting/transport, clathrin-coated vesicle uncoating, lysosomal enzymatic activity regulation) might be involved in AD, FTLD and DLB pathogenesis, thus suggesting an etiological link behind these diseases.


Assuntos
Doença de Alzheimer/metabolismo , Degeneração Lobar Frontotemporal/metabolismo , Predisposição Genética para Doença , Proteínas de Choque Térmico HSP40/genética , Proteínas Relacionadas a Receptor de LDL/genética , Doença por Corpos de Lewy/metabolismo , Proteínas de Membrana Transportadoras/genética , Polimorfismo de Nucleotídeo Único , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Feminino , Degeneração Lobar Frontotemporal/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Doença por Corpos de Lewy/genética , Lisossomos/metabolismo , Masculino , Pessoa de Meia-Idade , Análise de Sequência de DNA
11.
Neurol Sci ; 41(8): 2193-2200, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32166471

RESUMO

Cerebral amyloid angiopathy (CAA) is one of the major types of cerebral small vessel disease, and a leading cause of spontaneous intracerebral hemorrhage and cognitive decline in elderly patients. Although increasingly detected, a number of aspects including the pathophysiology, the clinical and neuroradiological phenotype, and the disease course are still under investigation. The incomplete knowledge of the disease limits the implementation of evidence-based guidelines on patient's clinical management and the development of treatments able to prevent or reduce disease progression. The SENECA (SEarchiNg biomarkErs of Cerebral Angiopathy) project is the first Italian multicenter cohort study aimed at better defining the disease natural history and identifying clinical and neuroradiological markers of disease progression. By a multidisciplinary approach and the collection of a large and well-phenotyped series and biorepository of CAA patients, the study is ultimately expected to improve the diagnosis and the knowledge of CAA pathophysiological mechanisms.


Assuntos
Angiopatia Amiloide Cerebral , Idoso , Angiopatia Amiloide Cerebral/complicações , Angiopatia Amiloide Cerebral/diagnóstico por imagem , Angiopatia Amiloide Cerebral/terapia , Hemorragia Cerebral , Estudos de Coortes , Humanos , Itália , Imageamento por Ressonância Magnética , Fenótipo
12.
Int J Mol Sci ; 21(10)2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32414028

RESUMO

Cerebral amyloid angiopathy (CAA), one of the main types of cerebral small vessel disease, is a major cause of spontaneous intracerebral haemorrhage and an important contributor to cognitive decline in elderly patients. Despite the number of experimental in vitro studies and animal models, the pathophysiology of CAA is still largely unknown. Although several pathogenic mechanisms including an unbalance between production and clearance of amyloid beta (Aß) protein as well as 'the prion hypothesis' have been invoked as possible disease triggers, they do not explain completely the disease pathogenesis. This incomplete disease knowledge limits the implementation of treatments able to prevent or halt the clinical progression. The continuous increase of CAA patients makes imperative the development of suitable experimental in vitro or animal models to identify disease biomarkers and new pharmacological treatments that could be administered in the early disease stages to prevent irreversible changes and disease progression.


Assuntos
Peptídeos beta-Amiloides/genética , Angiopatia Amiloide Cerebral/genética , Doenças de Pequenos Vasos Cerebrais/genética , Disfunção Cognitiva/genética , Animais , Biomarcadores/sangue , Angiopatia Amiloide Cerebral/sangue , Angiopatia Amiloide Cerebral/patologia , Hemorragia Cerebral/genética , Hemorragia Cerebral/patologia , Doenças de Pequenos Vasos Cerebrais/sangue , Doenças de Pequenos Vasos Cerebrais/patologia , Disfunção Cognitiva/sangue , Disfunção Cognitiva/patologia , Progressão da Doença , Humanos , Modelos Animais , Proteínas Priônicas/genética
13.
Altern Ther Health Med ; 25(2): 22-38, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30990791

RESUMO

Insulin resistance (IR) is defined as the inability of a known quantity of exogenous or endogenous insulin to increase glucose uptake and utilization. Several mechanisms have been proposed as possible causes underlying the development of IR and the IR syndrome. IR occurs as part of a cluster of cardiovascular-metabolic abnormalities commonly referred to as "The Metabolic Syndrome." This may lead to the development of type 2 diabetes, accelerated atherosclerosis, hypertension, dysmenorrhea, hirsutism, and polycystic ovarian syndrome, depending on the genetic background of the individual developing IR. The aim of this study was to assess, in 123 female and 35 male (mean age, 42 y ± 10.3; range 19-75 y) volunteers) whether IR could be partly related to a dietary sugar intolerance and whether there could be a correlation between the ALCAT intolerance test and a mutation of the TCFTL2 gene (it promotes the trascription of the proglucagone and plays a key role in the development of the Langherans islands). Results evidenced that subjects with an intolerance to sugar, also showed a statistically significant complete or incomplete alteration of the TCFTL2 genetic test. Based upon these findings, our study demonstrated that there is a clinical correlation between the ALCAT food intolerance test and the IR. The positivity to the ALCAT test of one of the sugars tested (fructose, sugar cane, and sugar beet) indicates, in the majority of the subjects, the presence of a mutation of the gene TCF7L2 and could contribute to the prevention and treatment of the IR.


Assuntos
Diabetes Mellitus Tipo 2 , Açúcares da Dieta , Intolerância Alimentar , Resistência à Insulina , Adulto , Idoso , Feminino , Teste de Tolerância a Glucose , Humanos , Insulina/sangue , Masculino , Síndrome Metabólica , Pessoa de Meia-Idade
15.
Neurobiol Dis ; 89: 101-11, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26721320

RESUMO

Alzheimer disease (AD) is the most prevalent form of dementia. Loss of hippocampal synapses is the first neurodegenerative event in AD. Synaptic loss has been associated with the accumulation in the brain parenchyma of soluble oligomeric forms of amyloid ß peptide (Aß1-42wt). Clinical observations have shown that a mutation in the APP protein (A673V) causes an early onset AD-type dementia in homozygous carriers while heterozygous carriers are unaffected. This mutation leads to the formation of mutated Aß peptides (Aß1-42A2V) in homozygous patients, while in heterozygous subjects both Aß1-42wt and Aß1-42A2V are present. To better understand the impact of the A673V mutation in AD, we analyzed the synaptotoxic effect of oligomers formed by aggregation of different Aß peptides (Aß1-42wt or Aß1-42A2V) and the combination of the two Aß1-42MIX (Aß1-42wt and Aß1-42A2V) in an in vitro model of synaptic injury. We showed that Aß1-42A2V oligomers are more toxic than Aß1-42wt oligomers in hippocampal neurons, confirming the results previously obtained in cell lines. Furthermore, we reported that oligomers obtained by the combination of both wild type and mutated peptides (Aß1-42MIX) did not exert synaptic toxicity. We concluded that the combination of Aß1-42wt and Aß1-42A2V peptides hinders the toxicity of Aß1-42A2V and counteracts the manifestation of synaptopathy in vitro. Finally we took advantage of this finding to generate a cell-permeable peptide for clinical application, by fusing the first six residues of the Aß1-42A2V to the TAT cargo sequence (Aß1-6A2VTAT(D)). Noteworthy, the treatment with Aß1-6A2VTAT(D) confers neuroprotection against both in vitro and in vivo synaptopathy models. Therefore Aß1-6A2VTAT(D) may represent an innovative therapeutic tool to prevent synaptic degeneration in AD.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/administração & dosagem , Peptídeos beta-Amiloides/toxicidade , Hipocampo/metabolismo , Neurônios/metabolismo , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/toxicidade , Sinapses/metabolismo , Peptídeos beta-Amiloides/ultraestrutura , Animais , Permeabilidade da Membrana Celular , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/metabolismo , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Fragmentos de Peptídeos/ultraestrutura , Sinapses/efeitos dos fármacos
16.
Neurobiol Dis ; 88: 75-84, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26792398

RESUMO

One attractive pharmacological strategy for Alzheimer's disease (AD) is to design small peptides to interact with amyloid-ß (Aß) protein reducing its aggregation and toxicity. Starting from clinical observations indicating that patients coding a mutated Aß variant (AßA2V) in the heterozygous state do not develop AD, we developed AßA2V synthetic peptides, as well as a small peptide homologous to residues 1-6. These hindered the amyloidogenesis of Aß and its neurotoxicity in vitro, suggesting a basis for the design of a new small peptide in D-isomeric form, linked to the arginine-rich TAT sequence [Aß1-6A2V-TAT(D)], to allow translocation across biological membranes and the blood-brain barrier. Aß1-6A2V-TAT(D) was resistant to protease degradation, stable in serum and specifically able to interfere with Aß aggregation in vitro, reducing the appearance of toxic soluble species and protecting transgenic C. elegans from toxicity related to the muscular expression of human Aß. These observations offer a proof of concept for future pharmacological studies in mouse models of AD, providing a foundation for the design of AßA2V-based peptidomimetic molecules for therapeutic purposes.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Mutação/genética , Síndromes Neurotóxicas , Fragmentos de Peptídeos/metabolismo , Sequência de Aminoácidos , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/toxicidade , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Produtos do Gene tat/genética , Produtos do Gene tat/metabolismo , Humanos , Técnicas In Vitro , Transtornos dos Movimentos/etiologia , Junção Neuromuscular/fisiopatologia , Síndromes Neurotóxicas/complicações , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/genética , Paralisia/etiologia , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/toxicidade , Ligação Proteica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Ressonância de Plasmônio de Superfície
17.
J Biol Chem ; 289(35): 24143-52, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25037228

RESUMO

We recently reported a novel Aß precursor protein mutation (A673V), corresponding to position 2 of Aß1-42 peptides (Aß1-42A2V), that caused an early onset AD-type dementia in a homozygous individual. The heterozygous relatives were not affected as an indication of autosomal recessive inheritance of this mutation. We investigated the folding kinetics of native unfolded Aß1-42A2V in comparison with the wild type sequence (Aß1-42WT) and the equimolar solution of both peptides (Aß1-42MIX) to characterize the oligomers that are produced in the early phases. We carried out the structural characterization of the three preparations using electron and atomic force microscopy, fluorescence emission, and x-ray diffraction and described the soluble oligomer formation kinetics by laser light scattering. The mutation promoted a peculiar pathway of oligomerization, forming a connected system similar to a polymer network with hydrophobic residues on the external surface. Aß1-42MIX generated assemblies very similar to those produced by Aß1-42WT, albeit with slower kinetics due to the difficulties of Aß1-42WT and Aß1-42A2V peptides in building up of stable intermolecular interaction.


Assuntos
Peptídeos beta-Amiloides/genética , Mutação , Fragmentos de Peptídeos/genética , Peptídeos beta-Amiloides/química , Dicroísmo Circular , Humanos , Cinética , Microscopia de Força Atômica , Fragmentos de Peptídeos/química , Polimerização , Dobramento de Proteína , Espalhamento a Baixo Ângulo , Espectrometria de Fluorescência , Difração de Raios X
18.
Neurobiol Dis ; 62: 521-32, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24184799

RESUMO

Although Alzheimer's disease (AD) is usually sporadic, in a small proportion of cases it is familial and can be linked to mutations in ß-amyloid precursor protein (APP). Unlike the other genetic defects, the mutation [alanine-673→valine-673] (A673V) causes the disease only in the homozygous condition with enhanced amyloid ß (Aß) production and aggregation; heterozygous carriers remain unaffected. It is not clear how misfolding and aggregation of Aß is affected in vivo by this mutation and whether this correlates with its toxic effects. No animal models over-expressing the A673V-APP gene or alanine-2-valine (A2V) mutated human Aß protein are currently available. Using the invertebrate Caenorhabditis elegans, we generated the first transgenic animal model to express the human Aß1-40 wild-type (WT) in neurons or possess the A2V mutation (Aß1-40A2V). Insertion of an Aß-mutated gene into this nematode reproduced the homozygous state of the human pathology. Functional and biochemical characteristics found in the A2V strain were compared to those of transgenic C. elegans expressing Aß1-40WT. The expression of both WT and A2V Aß1-40 specifically reduced the nematode's lifespan, causing behavioral defects and neurotransmission impairment which were worse in A2V worms. Mutant animals were more resistant than WT to paralysis induced by the cholinergic agonist levamisole, indicating that the locomotor defect was specifically linked to postsynaptic dysfunctions. The toxicity caused by the mutated protein was associated with a high propensity to form oligomeric assemblies which accumulate in the neurons, suggesting this to be the central event involved in the postsynaptic damage and early onset of the disease in homozygous human A673V carriers.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Neurônios/metabolismo , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/toxicidade , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/genética , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans , Humanos , Locomoção/efeitos dos fármacos , Mutação , Neurônios/efeitos dos fármacos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética
20.
Cureus ; 16(5): e60019, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38736760

RESUMO

We present the case of a female who developed cerebral venous thrombosis with thrombocytopenia after inoculation with the anti-coronavirus disease 2019 (COVID-19) Vaxzevria vaccine, followed by splanchnic thrombosis and diffuse hemorrhages. Despite receiving treatment, the complications increased, and hence therapeutic plasma exchange (TPE) was attempted, leading to laboratory and clinical improvements and discharge after a period of intensive care. Almost two years after the first episode, in the interim of which the patient complained of only minor symptoms such as asthenia and difficulty concentrating, she developed an epileptic syndrome that required neurological treatment. In addition, her fatigue and difficulty concentrating worsened and other serious symptoms of dysautonomia appeared, such as trembling of her right arm, loss of stability, and postural orthostatic tachycardia. As serum analysis revealed a significant number of alterations in autoantibodies against various G-protein-coupled receptors (GPCRs) and RAS-related proteins, two further TPEs were performed, resulting in rapid and sustained clinical improvement. This report highlights the role of the different types of autoantibodies produced in response to anti-COVID-19 vaccination, which can have functional, regulatory, and possibly pathogenic effects on the vascular and nervous systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA