Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2004047, 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33090682

RESUMO

Molybdenum sulfide emerged as promising hydrogen evolution reaction (HER) electrocatalyst thanks to its high intrinsic activity, however its limited active sites exposure and low conductivity hamper its performance. To address these drawbacks, the non-equilibrium nature of pulsed laser deposition (PLD) is exploited to synthesize self-supported hierarchical nanoarchitectures by gas phase nucleation and sequential attachment of defective molybdenum sulfide clusters. The physics of the process are studied by in situ diagnostics and correlated to the properties of the resulting electrocatalyst. The as-synthesized architectures have a disordered nanocrystalline structure, with nanodomains of bent, defective S-Mo-S layers embedded in an amorphous matrix, with excess sulfur and segregated molybdenum particles. Oxygen incorporation in this structure fosters the creation of amorphous oxide/oxysulfide nanophases with high electrical conductivity, enabling fast electron transfer to the active sites. The combined effect of the nanocrystalline pristine structure and the surface oxidation enhances the performance leading to small overpotentials, very fast kinetics (35.1 mV dec-1 Tafel slope) and remarkable long-term stability for continuous operation up to -1 A cm-2. This work shows possible new avenues in catalytic design arising from a non-equilibrium technique as PLD and the importance of structural and chemical control to improve the HER performance of MoS-based catalysts.

2.
Nanotechnology ; 29(46): 465603, 2018 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-30168445

RESUMO

In this contribution, we describe a room-temperature, template-free, single-step approach for the growth of functional crystalline silicon nanostructures with tailored porosity and photonic properties. The method employs a plasma-assisted nanoparticle synthesis reactor in combination with a supersonic jet deposition stage, in what we call nanoparticle jet deposition or plasma-assisted, supersonic aerosol jet deposition. The relationship between plasma parameters, nanoparticle impaction conditions and the resulting silicon material structural characteristics is investigated. This understanding is successfully employed for the production of porous 1D photonic crystals obtained by periodically modulating the density of the hierarchical silicon nanostructures and hence their local refractive index. The open porosity of this device is then exploited in a proof of concept optical chemical sensor.

3.
Nanotechnology ; 29(33): 335404, 2018 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-29808827

RESUMO

Quasi-1D-hyperbranched TiO2 nanostructures are grown via pulsed laser deposition and sensitized with thin layers of CdS to act as a highly efficient photoelectrochemical photoanode. The device properties are systematically investigated by optimizing the height of TiO2 scaffold structure and thickness of the CdS sensitizing layer, achieving photocurrent values up to 6.6 mA cm-2 and reaching saturation with applied biases as low as 0.35 VRHE. The high internal conversion efficiency of these devices is to be found in the efficient charge generation and injection of the thin CdS photoactive film and in the enhanced charge transport properties of the hyperbranched TiO2 scaffold. Hence, the proposed device represents a promising architecture for heterostructures capable of achieving high solar-to-hydrogen efficiency.

4.
Faraday Discuss ; 198: 433-448, 2017 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-28272631

RESUMO

Photoelectrochemical H2 production through hybrid organic/inorganic interfaces exploits the capability of polymeric absorbers to drive photo-induced electron transfer to an electrocatalyst in a water environment. Photoelectrode architectures based on solution-processed organic semiconductors are now emerging as low-cost alternatives to crystalline inorganic semiconductors based on Si, oxides and III-V alloys. In this work, we demonstrate that the stability of a hybrid organic/inorganic photocathode, employing a P3HT:PCBM blend as photoactive material, can be considerably improved by introducing an electrochemically stable WO3 hole selective layer, paired with a TiO2 electron selective layer. This hybrid photoelectrode exhibits a photocurrent of 2.48 mA cm-2 at 0 VRHE, +0.56 VRHE onset potential and a state-of the art operational activity of more than 10 hours. This work gives the perspective that photoelectrodes based on organic semiconductors, coupled with proper inorganic selective contacts, represent a sound new option for the efficient and durable photoelectrochemical conversion of solar energy into fuels.

5.
Nanotechnology ; 28(24): 245603, 2017 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-28440788

RESUMO

Monolithic dye-sensitized solar cell (DSC) architectures hold great potential for building-integrated photovoltaics applications. They indeed benefit from lower weight and manufacturing costs as they avoid the use of a transparent conductive oxide (TCO)-coated glass counter electrode. In this work, a transparent monolithic DSC comprising a hierarchical 1D nanostructure stack is fabricated by physical vapor deposition techniques. The proof of concept device comprises hyperbranched TiO2 nanostructures, sensitized by the prototypical N719, as photoanode, a hierarchical nanoporous Al2O3 spacer, and a microporous indium tin oxide (ITO) top electrode. An overall 3.12% power conversion efficiency with 60% transmittance outside the dye absorption spectral window is demonstrated. The introduction of a porous TCO layer allows an efficient trade-off between transparency and power conversion. The porous ITO exhibits submicrometer voids and supports annealing temperatures above 400 °C without compromising its optoelectronical properties. After thermal annealing at 500 °C, the resistivity, mobility, and carrier concentration of the 800 nm-thick porous ITO layer are found to be respectively 2.3 × 10-3 Ω cm-1, 11 cm2 V-1 s-1, and 1.62 × 1020 cm-3, resulting in a series resistance in the complete device architecture of 45 Ω. Electrochemical impedance and intensity-modulated photocurrent/photovoltage spectroscopy give insight into the electronic charge dynamic within the hierarchical monolithic DSCs, paving the way for potential device architecture improvements.

6.
Adv Funct Mater ; 24(20): 3043-3050, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-25834481

RESUMO

A quantitative method for the characterization of nanoscale 3D morphology is applied to the investigation of a hybrid solar cell based on a novel hierarchical nanostructured photoanode. A cross section of the solar cell device is prepared by focused ion beam milling in a micropillar geometry, which allows a detailed 3D reconstruction of the titania photoanode by electron tomography. It is found that the hierarchical titania nanostructure facilitates polymer infiltration, thus favoring intermixing of the two semiconducting phases, essential for charge separation. The 3D nanoparticle network is analyzed with tools from stochastic geometry to extract information related to the charge transport in the hierarchical solar cell. In particular, the experimental dataset allows direct visualization of the percolation pathways that contribute to the photocurrent.

7.
Langmuir ; 30(45): 13581-7, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25346328

RESUMO

In this work, we describe self-assembled surfaces with a peculiar multiscale organization, from the nanoscale to the microscale, exhibiting the Cassie-Baxter wetting regime with extremely low water adhesion: floating drops regime with roll-off angles < 5°. These surfaces comprise bundles of hierarchical, quasi-one-dimensional (1D) TiO2 nanostructures functionalized with a fluorinated molecule (PFNA). While the hierarchical nanostructures are the result of a gas-phase self-assembly process, their bundles are the result of the capillary forces acting between them when the PFNA solvent evaporates. Nanometric features are found to influence the hydrophobic behavior of the surface, which is enhanced by the micrometric structures up to the achievement of the superhydrophobic Cassie-Baxter state (contact angle (CA) ≫ 150°). Thanks to their high total and diffuse transmittance and their self-cleaning properties, these surfaces could be interesting for several applications such as smart windows and photovoltaics where light management and surface cleanliness play a crucial role. Moreover, the multiscale analysis performed in this work contributes to the understanding of the basic mechanisms behind extreme wetting behaviors.

8.
Adv Mater ; 35(46): e2303142, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37515520

RESUMO

Oxide glasses are an elementary group of materials in modern society, but brittleness limits their wider usability at room temperature. As an exception to the rule, amorphous aluminum oxide (a-Al2 O3 ) is a rare diatomic glassy material exhibiting significant nanoscale plasticity at room temperature. Here, it is shown experimentally that the room temperature plasticity of a-Al2 O3 extends to the microscale and high strain rates using in situ micropillar compression. All tested a-Al2 O3 micropillars deform without fracture at up to 50% strain via a combined mechanism of viscous creep and shear band slip propagation. Large-scale molecular dynamics simulations align with the main experimental observations and verify the plasticity mechanism at the atomic scale. The experimental strain rates reach magnitudes typical for impact loading scenarios, such as hammer forging, with strain rates up to the order of 1 000 s-1 , and the total a-Al2 O3 sample volume exhibiting significant low-temperature plasticity without fracture is expanded by 5 orders of magnitude from previous observations. The discovery is consistent with the theoretical prediction that the plasticity observed in a-Al2 O3 can extend to macroscopic bulk scale and suggests that amorphous oxides show significant potential to be used as light, high-strength, and damage-tolerant engineering materials.

12.
ACS Mater Au ; 1(1): 6-36, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36855615

RESUMO

Group VI transition metal chalcogenides are the subject of increasing research interest for various electrochemical applications such as low-temperature water electrolysis, batteries, and supercapacitors due to their high activity, chemical stability, and the strong correlation between structure and electrochemical properties. Particularly appealing is their utilization as electrocatalysts for the synthesis of energy vectors and value-added chemicals such as C-based chemicals from the CO2 reduction reaction (CO2R) or ammonia from the nitrogen fixation reaction (NRR). This review discusses the role of structural and electronic properties of transition metal chalcogenides in enhancing selectivity and activity toward these two key reduction reactions. First, we discuss the morphological and electronic structure of these compounds, outlining design strategies to control and fine-tune them. Then, we discuss the role of the active sites and the strategies developed to enhance the activity of transition metal chalcogenide-based catalysts in the framework of CO2R and NRR against the parasitic hydrogen evolution reaction (HER); leveraging on the design rules applied for HER applications, we discuss their future perspective for the applications in CO2R and NRR. For these two reactions, we comprehensively review recent progress in unveiling reaction mechanisms at different sites and the most effective strategies for fabricating catalysts that, by exploiting the structural and electronic peculiarities of transition metal chalcogenides, can outperform many metallic compounds. Transition metal chalcogenides outperform state-of-the-art catalysts for CO2 to CO reduction in ionic liquids due to the favorable CO2 adsorption on the metal edge sites, whereas the basal sites, due to their conformation, represent an appealing design space for reduction of CO2 to complex carbon products. For the NRR instead, the resemblance of transition metal chalcogenides to the active centers of nitrogenase enzymes represents a powerful nature-mimicking approach for the design of catalysts with enhanced performance, although strategies to hinder the HER must be integrated in the catalytic architecture.

13.
iScience ; 24(5): 102463, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34027321

RESUMO

Promoting solar fuels as a viable alternative to hydrocarbons calls for technologies that couple efficiency, durability, and low cost. In this work we elucidate how hybrid organic-inorganic systems employing hybrid photocathodes (HPC) and perovskite solar cells (PSC) could eventually match these needs, enabling sustainable and clean hydrogen production. First, we demonstrate a system comprising an HPC, a PSC, and a Ru-based oxygen evolution catalyst reaching a solar-to-hydrogen (STH) efficiency above 2%. Moving from this experimental result, we elaborate a perspective for this technology by adapting the existing models to the specific case of an HPC-PSC tandem. We found two very promising scenarios: one with a 10% STH efficiency, achievable using the currently available semiconducting polymers and the widely used methylammonium lead iodide (MAPI) PSC, and the other one with a 20% STH efficiency, requiring dedicated development for water-splitting applications of recently reported high-performing organic semiconductors and narrow band-gap perovskites.

14.
ACS Appl Mater Interfaces ; 13(10): 11741-11754, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33651944

RESUMO

The use of solution processes to fabricate perovskite solar cells (PSCs) represents a winning strategy to reduce capital expenditure, increase the throughput, and allow for process flexibility needed to adapt PVs to new applications. However, the typical fabrication process for PSC development to date is performed in an inert atmosphere (nitrogen), usually in a glovebox, hampering the industrial scale-up. In this work, we demonstrate, for the first time, the use of double-cation perovskite (forsaking the unstable methylammonium (MA) cation) processed in ambient air by employing potassium-doped graphene oxide (GO-K) as an interlayer, between the mesoporous TiO2 and the perovskite layer and using infrared annealing (IRA). We upscaled the device active area from 0.09 to 16 cm2 by blade coating the perovskite layer, exhibiting power conversion efficiencies (PCEs) of 18.3 and 16.10% for 0.1 and 16 cm2 active area devices, respectively. We demonstrated how the efficiency and stability of MA-free-based perovskite deposition in air have been improved by employing GO-K and IRA.

15.
Science ; 366(6467): 864-869, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31727833

RESUMO

Oxide glasses are an integral part of the modern world, but their usefulness can be limited by their characteristic brittleness at room temperature. We show that amorphous aluminum oxide can permanently deform without fracture at room temperature and high strain rate by a viscous creep mechanism. These thin-films can reach flow stress at room temperature and can flow plastically up to a total elongation of 100%, provided that the material is dense and free of geometrical flaws. Our study demonstrates a much higher ductility for an amorphous oxide at low temperature than previous observations. This discovery may facilitate the realization of damage-tolerant glass materials that contribute in new ways, with the potential to improve the mechanical resistance and reliability of applications such as electronic devices and batteries.

16.
ACS Sens ; 2(1): 61-68, 2017 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-28722431

RESUMO

We demonstrate exceptionally large modulation of PL intensity in hierarchical titanium dioxide (TiO2) nanostructures exposed to molecular oxygen (O2). Optical responsivities up to about 1100% at 20% O2 concentrations are observed in hyperbranched anatase-phase hierarchical structures, outperforming those obtainable by commercial TiO2 nanopowders (up to a factor of ∼7 for response to synthetic air) and significantly improving the ones typically reported in PL-based opto-chemical gas sensing using MOXs. The improved PL response is discussed in terms of the specific morphology of hierarchical structures, characterized by simultaneous presence of small nanoparticles, large surface areas, and large voids. These characteristics guarantee an optimal interplay between photogenerated charges, PL-active centers, and adsorbed gas molecules. The results highlight the potentialities offered by hierarchical structures based on TiO2 or other MOXs and open interesting scenarios toward the development of all-optical and/or hybrid (opto/electrical) chemical sensors with improved sensitivity.

17.
ACS Omega ; 2(7): 3424-3431, 2017 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457664

RESUMO

Nowadays, the efficient, stable, and scalable conversion of solar energy into chemical fuels represents a great scientific, economic, and ethical challenge. Amongst the available candidate technologies, photoelectrochemical water-splitting potentially has the most promising technoeconomic trade-off between cost and efficiency. However, research on semiconductors and photoelectrode architectures suitable for H2 evolution has focused mainly on the use of fabrication techniques and inorganic materials that are not easily scalable. Here, we report for the first time an all solution-processed approach for the fabrication of hybrid organic/inorganic photocathodes based on organic semiconductor bulk heterojunctions that exhibit promising photoelectrochemical performance. The sequential deposition of inorganic material, charge-selective contacts, visible-light sensitive organic polymers, and earth-abundant, nonprecious catalyst by spin coating leads to state-of-the-art photoelectrochemical parameters, comprising a high onset potential [+0.602 V vs reversible hydrogen electrode (RHE)] and a positive maximum power point (+0.222 V vs RHE), a photocurrent density as high as 5.25 mA/cm2 at 0 V versus RHE, an incident photon-to-current conversion efficiency at 0 V versus RHE of above 35%, and 100% faradaic efficiency for hydrogen production. The demonstrated all solution-processed hybrid photoelectrodes represent an eligible candidate for the scalable and low-cost solar-to-H2 conversion technology that embodies the feasibility requirements for large area, plant-scale applications.

18.
ChemSusChem ; 9(21): 3062-3066, 2016 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-27730752

RESUMO

Here, we have developed an organic photocathode for water reduction to H2 , delivering more than 1 mA cm-2 at 0 V versus RHE and above 3 mA cm-2 at -0.5 V versus RHE with moderate stability under neutral pH conditions. The initial competitive reduction of water to H2 and ZnO to metallic Zn is responsible for the dynamic behaviour of both photocurrent and Faradaic efficiency of the device, which reaches 100 % Faradaic efficiency after 90 min operation. In any case, outstanding stable H2 flow of approximately 2 µmol h-1 is measured over 1 h at 0 V versus RHE and at neutral pH, after equilibrium between the Zn2+ /Zn0 concentration in the AZO film is reached. This achievement opens new avenues for the development of allsolution-processed organic photoelectrochemical cells for the solar generation of H2 from sea water.


Assuntos
Hidrogênio/química , Processos Fotoquímicos , Águas Salinas/química , Concentração de Íons de Hidrogênio , Oxirredução , Luz Solar , Zinco/química
19.
Adv Healthc Mater ; 5(17): 2271-82, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27240295

RESUMO

Replacement strategies arise as promising approaches in case of inherited retinal dystrophies leading to blindness. A fully organic retinal prosthesis made of conjugated polymers layered onto a silk fibroin substrate is engineered. First, the biophysical and surface properties are characterized; then, the long-term biocompatibility is assessed after implantation of the organic device in the subretinal space of 3-months-old rats for a period of five months. The results indicate a good stability of the subretinal implants over time, with preservation of the physical properties of the polymeric layer and a tight contact with the outer retina. Immunoinflammatory markers detect only a modest tissue reaction to the surgical insult and the foreign body that peaks shortly after surgery and progressively decreases with time to normal levels at five months after implantation. Importantly, the integrity of the polymeric layer in direct contact with the retinal tissue is preserved after five months of implantation. The recovery of the foreign-body tissue reaction is also associated with a normal b-wave in the electroretinographic response. The results demonstrate that the device implanted in nondystrophic eyes is well tolerated, highly biocompatible, and suitable as retinal prosthesis in case of photoreceptor degeneration.


Assuntos
Materiais Biocompatíveis/química , Implantes Experimentais , Teste de Materiais , Retina , Animais , Ratos
20.
ACS Appl Mater Interfaces ; 7(14): 7451-5, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25822757

RESUMO

The performance of hybrid solar cells is strongly affected by the device morphology. In this work, we demonstrate a poly(3-hexylthiophene-2,5-diyl)/TiO2 hybrid solar cell where the TiO2 photoanode comprises an array of tree-like hyperbranched quasi-1D nanostructures self-assembled from the gas phase. This advanced architecture enables us to increase the power conversion efficiency to over 1%, doubling the efficiency with respect to state of the art devices employing standard mesoporous titania photoanodes. This improvement is attributed to several peculiar features of this array of nanostructures: high interfacial area; increased optical density thanks to the enhanced light scattering; and enhanced crystallization of poly(3-hexylthiophene-2,5-diyl) inside the quasi-1D nanostructure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA