Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 34(15): 2059-77, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26108535

RESUMO

Recycling synaptic vesicles (SVs) transit through early endosomal sorting stations, which raises a fundamental question: are SVs sorted toward endolysosomal pathways? Here, we used snapin mutants as tools to assess how endolysosomal sorting and trafficking impact presynaptic activity in wild-type and snapin(-/-) neurons. Snapin acts as a dynein adaptor that mediates the retrograde transport of late endosomes (LEs) and interacts with dysbindin, a subunit of the endosomal sorting complex BLOC-1. Expressing dynein-binding defective snapin mutants induced SV accumulation at presynaptic terminals, mimicking the snapin(-/-) phenotype. Conversely, over-expressing snapin reduced SV pool size by enhancing SV trafficking to the endolysosomal pathway. Using a SV-targeted Ca(2+) sensor, we demonstrate that snapin-dysbindin interaction regulates SV positional priming through BLOC-1/AP-3-dependent sorting. Our study reveals a bipartite regulation of presynaptic activity by endolysosomal trafficking and sorting: LE transport regulates SV pool size, and BLOC-1/AP-3-dependent sorting fine-tunes the Ca(2+) sensitivity of SV release. Therefore, our study provides new mechanistic insights into the maintenance and regulation of SV pool size and synchronized SV fusion through snapin-mediated LE trafficking and endosomal sorting.


Assuntos
Lisossomos/metabolismo , Modelos Neurológicos , Neurônios/fisiologia , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Transporte Biológico/fisiologia , Western Blotting , Cálcio/metabolismo , Fracionamento Celular , Células Cultivadas , Dicroísmo Circular , Disbindina , Proteínas Associadas à Distrofina , Imuno-Histoquímica , Camundongos , Microscopia Eletrônica , Imagem com Lapso de Tempo , Proteínas de Transporte Vesicular/genética
2.
Proc Natl Acad Sci U S A ; 107(8): 3517-21, 2010 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-20133592

RESUMO

Almost all known intracellular fusion reactions are driven by formation of trans-SNARE complexes through pairing of vesicle-associated v-SNAREs with complementary t-SNAREs on target membranes. However, the number of SNARE complexes required for fusion is unknown, and there is controversy about whether additional proteins are required to explain the fast fusion which can occur in cells. Here we show that single vesicles containing the synaptic/exocytic v-SNAREs VAMP/synaptobrevin fuse rapidly with planar, supported bilayers containing the synaptic/exocytic t-SNAREs syntaxin-SNAP25. Fusion rates decreased dramatically when the number of externally oriented v-SNAREs per vesicle was reduced below 5-10, directly establishing this as the minimum number required for rapid fusion. Docking-to-fusion delay time distributions were consistent with a requirement that 5-11 t-SNAREs be recruited to achieve fusion, closely matching the v-SNARE requirement.


Assuntos
Recuperação de Fluorescência Após Fotodegradação/métodos , Fusão de Membrana , Proteínas SNARE/metabolismo , Animais , Humanos , Proteínas SNARE/química , Proteína 25 Associada a Sinaptossoma/química , Proteína 25 Associada a Sinaptossoma/metabolismo , Lipossomas Unilamelares/química
3.
J Biol Chem ; 285(31): 23665-75, 2010 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-20519509

RESUMO

Neuroexocytosis requires SNARE proteins, which assemble into trans complexes at the synaptic vesicle/plasma membrane interface and mediate bilayer fusion. Ca(2+) sensitivity is thought to be conferred by synaptotagmin, although the ubiquitous Ca(2+)-effector calmodulin has also been implicated in SNARE-dependent membrane fusion. To examine the molecular mechanisms involved, we examined the direct action of calmodulin and synaptotagmin in vitro, using fluorescence resonance energy transfer to assay lipid mixing between target- and vesicle-SNARE liposomes. Ca(2+)/calmodulin inhibited SNARE assembly and membrane fusion by binding to two distinct motifs located in the membrane-proximal regions of VAMP2 (K(D) = 500 nm) and syntaxin 1 (K(D) = 2 microm). In contrast, fusion was increased by full-length synaptotagmin 1 anchored in vesicle-SNARE liposomes. When synaptotagmin and calmodulin were combined, synaptotagmin overcame the inhibitory effects of calmodulin. Furthermore, synaptotagmin displaced calmodulin binding to target-SNAREs. These findings suggest that two distinct Ca(2+) sensors act antagonistically in SNARE-mediated fusion.


Assuntos
Cálcio/metabolismo , Calmodulina/química , Regulação da Expressão Gênica , Fusão de Membrana , Proteínas SNARE/química , Animais , Cálcio/química , Bovinos , Membrana Celular/metabolismo , Exocitose , Transferência Ressonante de Energia de Fluorescência , Humanos , Cinética , Lipossomos/química , Sinaptotagmina I/química , Toxina Tetânica/química
4.
Neuron ; 67(2): 268-79, 2010 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-20670834

RESUMO

Acidification of synaptic vesicles by the vacuolar proton ATPase is essential for loading with neurotransmitter. Debated findings have suggested that V-ATPase membrane domain (V0) also contributes to Ca(2+)-dependent transmitter release via a direct role in vesicle membrane fusion, but the underlying mechanisms remain obscure. We now report a direct interaction between V0 c-subunit and the v-SNARE synaptobrevin, constituting a molecular link between the V-ATPase and SNARE-mediated fusion. Interaction domains were mapped to the membrane-proximal domain of VAMP2 and the cytosolic 3.4 loop of c-subunit. Acute perturbation of this interaction with c-subunit 3.4 loop peptides did not affect synaptic vesicle proton pump activity, but induced a substantial decrease in neurotransmitter release probability, inhibiting glutamatergic as well as cholinergic transmission in cortical slices and cultured sympathetic neurons, respectively. Thus, V-ATPase may ensure two independent functions: proton transport by a fully assembled V-ATPase and a role in SNARE-dependent exocytosis by the V0 sector.


Assuntos
Neurônios/metabolismo , Neurotransmissores/metabolismo , Sinapses/fisiologia , Vesículas Sinápticas/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Membrana Celular/metabolismo , Córtex Cerebral/citologia , Inibidores Enzimáticos/farmacologia , Ensaio de Imunoadsorção Enzimática/métodos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Técnicas In Vitro , Lipossomos/metabolismo , Macrolídeos/farmacologia , Mutação/genética , Neurônios/efeitos dos fármacos , Neurônios/ultraestrutura , Neurotransmissores/farmacologia , Peptídeos/metabolismo , Peptídeos/farmacologia , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteolipídeos/metabolismo , Ratos , Ratos Wistar , Proteínas SNARE/metabolismo , Alinhamento de Sequência/métodos , Técnicas do Sistema de Duplo-Híbrido , ATPases Vacuolares Próton-Translocadoras/química , Proteína 2 Associada à Membrana da Vesícula/genética , Proteína 2 Associada à Membrana da Vesícula/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA