Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Dev Biol ; 400(1): 82-93, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25641696

RESUMO

Previous studies using transgenic Pax3cre mice have revealed roles for fibroblast growth factor receptors (Fgfrs) and Fgfr substrate 2α (Frs2α) signaling in early metanephric mesenchyme patterning and in ureteric morphogenesis. The role of Fgfr/Frs2α signaling in nephron progenitors is unknown. Thus, we generated mouse models using BAC transgenic Six2EGFPcre (Six2cre) mediated deletion of Fgfrs and/or Frs2α in nephron progenitors. Six2cre mediated deletion of Fgfr1 or Fgfr2 alone led to no obvious kidney defects. Six2creFgfr1(flox/flox)Fgfr2(flox/flox) (Fgfr1/2(NP-/-)) mice generate a discernable kidney; however, they develop nephron progenitor depletion starting at embryonic day 12.5 (E12.5) and later demonstrate severe cystic dysplasia. To determine the role of Frs2α signaling downstream of Fgfr2 in Fgfr1/2(NP-/-) mice, we generated Six2cre(,)Fgfr1(flox/flox)Fgfr2(LR/LR) (Fgfr1(NP-/-)Fgfr2(LR/LR)) mice that have point mutations in the Frs2α binding site of Fgfr2. Like Fgfr1/2(NP-/-) mice, Fgfr1(NP-/-)Fgfr2(LR/LR) develop nephron progenitor depletion, but it does not start until E14.5 and older mice have less severe cystic dysplasia than Fgfr1/2(NP-/-) To determine the role of Frs2α alone in nephron progenitors, we generated Six2creFrs2'A(flox/flox) (Frs2a(NP-/-)) mice. Frs2a(NP-/-)mice also develop nephron progenitor depletion and renal cysts, although these occurred later and were less severe than in the other Six2cre mutant mice. The nephron progenitor loss in all Six2cre mutant lines was associated with decreased Cited1 expression and increased apoptosis versus controls. FAC-sorted nephron progenitors in Six2cre Frs2'A(flox/flox) mice demonstrated evidence of increased Notch activity versus controls, which likely drives the progenitor defects. Thus, Fgfr1 and Fgfr2 have synergistic roles in maintaining nephron progenitors; furthermore, Fgfr signaling in nephron progenitors appears to be mediated predominantly by Frs2α.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Membrana/metabolismo , Células-Tronco Mesenquimais/fisiologia , Néfrons/embriologia , Transdução de Sinais/fisiologia , Animais , Apoptose/fisiologia , Proteínas Reguladoras de Apoptose , Citometria de Fluxo , Camundongos , Camundongos Knockout , Microscopia de Fluorescência , Proteínas Nucleares/metabolismo , Reação em Cadeia da Polimerase , Receptores Notch/metabolismo , Transativadores/metabolismo
2.
J Nutr ; 146(12): 2436-2444, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27807038

RESUMO

BACKGROUND: Mortality in children with severe acute malnutrition (SAM) remains high despite standardized rehabilitation protocols. Two forms of SAM are classically distinguished: kwashiorkor and marasmus. Children with kwashiorkor have nutritional edema and metabolic disturbances, including hypoalbuminemia and hepatic steatosis, whereas marasmus is characterized by severe wasting. The metabolic changes underlying these phenotypes have been poorly characterized, and whether homeostasis is achieved during hospital stay is unclear. OBJECTIVES: We aimed to characterize metabolic differences between children with marasmus and kwashiorkor at hospital admission and after clinical stabilization and to compare them with stunted and nonstunted community controls. METHODS: We studied children aged 9-59 mo from Malawi who were hospitalized with SAM (n = 40; 21 with kwashiorkor and 19 with marasmus) or living in the community (n = 157; 78 stunted and 79 nonstunted). Serum from patients with SAM was obtained at hospital admission and 3 d after nutritional stabilization and from community controls. With the use of targeted metabolomics, 141 metabolites, including amino acids, biogenic amines, acylcarnitines, sphingomyelins, and phosphatidylcholines, were measured. RESULTS: At admission, most metabolites (128 of 141; 91%) were lower in children with kwashiorkor than in those with marasmus, with significant differences in several amino acids and biogenic amines, including those of the kynurenine-tryptophan pathway. Several phosphatidylcholines and some acylcarnitines also differed. Patients with SAM had profiles that were profoundly different from those of stunted and nonstunted controls, even after clinical stabilization. Amino acids and biogenic amines generally improved with nutritional rehabilitation, but most sphingomyelins and phosphatidylcholines did not. CONCLUSIONS: Children with kwashiorkor were metabolically distinct from those with marasmus, and were more prone to severe metabolic disruptions. Children with SAM showed metabolic profiles that were profoundly different from stunted and nonstunted controls, even after clinical stabilization. Therefore, metabolic recovery in children with SAM likely extends beyond discharge, which may explain the poor long-term outcomes in these children. This trial was registered at isrctn.org as ISRCTN13916953.


Assuntos
Transtornos da Nutrição Infantil/sangue , Regulação da Expressão Gênica/fisiologia , Kwashiorkor/sangue , Kwashiorkor/diagnóstico , Metaboloma , Desnutrição Proteico-Calórica/sangue , Desnutrição Proteico-Calórica/diagnóstico , Transtornos da Nutrição Infantil/metabolismo , Transtornos da Nutrição Infantil/mortalidade , Pré-Escolar , Feminino , Humanos , Lactente , Kwashiorkor/metabolismo , Kwashiorkor/mortalidade , Masculino , Desnutrição Proteico-Calórica/metabolismo , Desnutrição Proteico-Calórica/mortalidade
3.
Development ; 138(13): 2717-27, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21613322

RESUMO

The mammalian kidney and male reproductive system are both derived from the intermediate mesoderm. The spatial and temporal expression of bone morphogenetic protein (BMP) 2 and BMP4 and their cognate receptor, activin like kinase 3 (ALK3), suggests a functional role for BMP-ALK3 signaling during formation of intermediate mesoderm-derivative organs. Here, we define cell autonomous functions for Alk3 in the kidney and male gonad in mice with CRE-mediated Alk3 inactivation targeted to intermediate mesoderm progenitors (Alk3(IMP null)). Alk3-deficient mice exhibit simple renal hypoplasia characterized by decreases in both kidney size and nephron number but normal tissue architecture. These defects are preceded by a decreased contribution of Alk3-deleted cells to the metanephric blastema and reduced expression of Osr1 and SIX2, which mark nephron progenitor cells. Mutant mice are also characterized by defects in intermediate mesoderm-derived genital tissues with fewer mesonephric tubules and testicular Leydig cells, epithelial vacuolization in the postnatal corpus epididymis, and decreased serum testosterone levels and reduced fertility. Analysis of ALK3-dependent signaling effectors revealed lineage-specific reduction of phospho-p38 MAPK in metanephric mesenchyme and phospho-SMAD1/5/8 in the testis. Together, these results demonstrate a requirement for Alk3 in distinct progenitor cell populations derived from the intermediate mesoderm.


Assuntos
Androgênios/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Mesoderma/metabolismo , Néfrons/citologia , Néfrons/metabolismo , Animais , Apoptose/genética , Apoptose/fisiologia , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Proliferação de Células , Imunofluorescência , Immunoblotting , Imuno-Histoquímica , Hibridização In Situ , Rim/citologia , Rim/embriologia , Rim/metabolismo , Masculino , Mesoderma/embriologia , Camundongos , Camundongos Mutantes , Modelos Biológicos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
4.
J Am Soc Nephrol ; 23(4): 607-17, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22282599

RESUMO

Conditional deletion of fibroblast growth factor receptors (Fgfrs) 1 and 2 in the metanephric mesenchyme (MM) of mice leads to a virtual absence of MM and unbranched ureteric buds that are occasionally duplex. Deletion of Fgfr2 in the MM leads to kidneys with cranially displaced ureteric buds along the Wolffian duct or duplex ureters. Mice with point mutations in Fgfr2's binding site for the docking protein Frs2α (Fgfr2(LR/LR)), however, have normal kidneys; the roles of the Fgfr2/Frs2α signaling axis in MM development and regulating the ureteric bud induction site are incompletely understood. Here, we generated mice with both Fgfr1 deleted in the MM and Fgfr2(LR/LR) point mutations (Fgfr1(Mes-/-)Fgfrf2(LR/LR)). Unlike mice lacking both Fgfr1 and Fgfr2 in the MM, these mice had no obvious MM defects but had cranially displaced or duplex ureteric buds, probably as a result of decreased Bmp4 expression. Fgfr1(Mes-/-)Fgfr2(LR/LR) mice also had subsequent defects in ureteric morphogenesis, including dilated, hyperproliferative tips and decreased branching. Ultimately, they developed progressive renal cystic dysplasia associated with abnormally oriented cell division. Furthermore, mutants had increased and ectopic expression of Ret and its downstream targets in ureteric trunks, and exhibited upregulation of Ret/Etv4/5 signaling effectors, including Met, Myb, Cxcr4, and Crlf1. These defects were associated with reduced expression of Bmp4 in mesenchymal cells near mutant ureteric bud tips. Taken together, these results demonstrate that Fgfr2/Frs2α signaling in the MM promotes Bmp4 expression, which represses Ret levels and signaling in the ureteric bud to ensure normal ureteric morphogenesis.


Assuntos
Rim/embriologia , Morfogênese/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Ureter/embriologia , Análise de Variância , Animais , Apoptose/genética , Apoptose/fisiologia , Proliferação de Células , Modelos Animais de Doenças , Imuno-Histoquímica , Mesoderma/metabolismo , Camundongos , Camundongos Transgênicos , Mutação Puntual , Distribuição Aleatória , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Transdução de Sinais/genética , Estatísticas não Paramétricas , Ureter/patologia
5.
J Am Soc Nephrol ; 22(4): 718-31, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21436291

RESUMO

Renal dysplasia, defined by defective ureteric branching morphogenesis and nephrogenesis, is the major cause of renal failure in infants and children. Here, we define a pathogenic role for a ß-catenin-activated genetic pathway in murine renal dysplasia. Stabilization of ß-catenin in the ureteric cell lineage before the onset of kidney development increased ß-catenin levels and caused renal aplasia or severe hypodysplasia. Analysis of gene expression in the dysplastic tissue identified downregulation of genes required for ureteric branching and upregulation of Tgfß2 and Dkk1. Treatment of wild-type kidney explants with TGFß2 or DKK1 generated morphogenetic phenotypes strikingly similar to those observed in mutant kidney tissue. Stabilization of ß-catenin after the onset of kidney development also caused dysplasia and upregulation of Tgfß2 and Dkk1 in the epithelium. Together, these results demonstrate that elevation of ß-catenin levels during kidney development causes dysplasia.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Rim/anormalidades , Rim/embriologia , Fator de Crescimento Transformador beta2/fisiologia , Regulação para Cima/fisiologia , beta Catenina/fisiologia , Animais , Apoptose/fisiologia , Proliferação de Células , Modelos Animais de Doenças , Feminino , Rim/fisiopatologia , Camundongos , Camundongos Mutantes , Morfogênese/fisiologia , Gravidez , Transdução de Sinais/fisiologia , Ureter/anormalidades , Ureter/embriologia , Ureter/fisiopatologia , Proteínas Wnt/fisiologia
6.
Sci Rep ; 12(1): 19948, 2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36402829

RESUMO

Severe malnutrition accounts for half-a-million deaths annually in children under the age of five. Despite improved WHO guidelines, inpatient mortality remains high and is associated with metabolic dysfunction. Previous studies suggest a correlation between hepatic metabolic dysfunction and impaired autophagy. We aimed to determine the role of mTORC1 inhibition in a murine model of malnutrition-induced hepatic dysfunction. Wild type weanling C57/B6 mice were fed a 18 or 1% protein diet for two weeks. A third low-protein group received daily rapamycin injections, an mTORC1 inhibitor. Hepatic metabolic function was assessed by histology, immunofluorescence, gene expression, metabolomics and protein levels. Low protein-fed mice manifested characteristics of severe malnutrition, including weight loss, hypoalbuminemia, hypoglycemia, hepatic steatosis and cholestasis. Low protein-fed mice had fewer mitochondria and showed signs of impaired mitochondrial function. Rapamycin prevented hepatic steatosis, restored ATP levels and fasted plasma glucose levels compared to untreated mice. This correlated with increased content of LC3-II, and decreased content mitochondrial damage marker, PINK1. We demonstrate that hepatic steatosis and disturbed mitochondrial function in a murine model of severe malnutrition can be partially prevented through inhibition of mTORC1. These findings suggest that stimulation of autophagy could be a novel approach to improve metabolic function in severely malnourished children.


Assuntos
Fígado Gorduroso , Desnutrição , Camundongos , Animais , Modelos Animais de Doenças , Fígado Gorduroso/metabolismo , Serina-Treonina Quinases TOR , Desnutrição/complicações , Sirolimo/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina
7.
Hum Mol Genet ; 18(13): 2328-43, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19346236

RESUMO

To elucidate the molecular pathways that modulate renal cyst growth in ADPKD, we performed global gene profiling on cysts of different size (<1 ml, n = 5; 10-20 ml, n = 5; >50 ml, n = 3) and minimally cystic tissue (MCT, n = 5) from five PKD1 human polycystic kidneys using Affymetrix HG-U133 Plus 2.0 arrays. We used gene set enrichment analysis to identify overrepresented signaling pathways and key transcription factors (TFs) between cysts and MCT. We found down-regulation of kidney epithelial restricted genes (e.g. nephron segment-specific markers and cilia-associated cystic genes such as HNF1B, PKHD1, IFT88 and CYS1) in the renal cysts. On the other hand, PKD1 cysts displayed a rich profile of gene sets associated with renal development, mitogen-mediated proliferation, cell cycle progression, epithelial-mesenchymal transition, hypoxia, aging and immune/inflammatory responses. Notably, our data suggest that up-regulation of Wnt/beta-catenin, pleiotropic growth factor/receptor tyrosine kinase (e.g. IGF/IGF1R, FGF/FGFR, EGF/EGFR, VEGF/VEGFR), G-protein-coupled receptor (e.g. PTGER2) signaling was associated with renal cystic growth. By integrating these pathways with a number of dysregulated networks of TFs (e.g. SRF, MYC, E2F1, CREB1, LEF1, TCF7, HNF1B/ HNF1A and HNF4A), our data suggest that epithelial dedifferentiation accompanied by aberrant activation and cross-talk of specific signaling pathways may be required for PKD1 cyst growth and disease progression. Pharmacological modulation of some of these signaling pathways may provide a potential therapeutic strategy for ADPKD.


Assuntos
Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Rim Policístico Autossômico Dominante/genética , Cistos/genética , Cistos/metabolismo , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Rim Policístico Autossômico Dominante/metabolismo , Transdução de Sinais , Biologia de Sistemas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Hum Mol Genet ; 17(20): 3105-17, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18632682

RESUMO

Polycystin-1 (PC1), the product of the PKD1 gene mutated in the majority of autosomal dominant polycystic kidney disease (ADPKD) cases, undergoes a cleavage resulting in the intracellular release of its C-terminal tail (CTT). Here, we demonstrate that the PC1 CTT co-localizes with and binds to beta-catenin in the nucleus. This interaction requires a nuclear localization motif present in the PC1 CTT as well as the N-terminal portion of beta-catenin. The PC1 CTT inhibits the ability of both beta-catenin and Wnt ligands to activate T-cell factor (TCF)-dependent gene transcription, a major effector of the canonical Wnt signaling pathway. The PC1 CTT may produce this effect by reducing the apparent affinity of the interaction between beta-catenin and the TCF protein. DNA microarray analysis reveals that the canonical Wnt signaling pathway is activated in ADPKD patient cysts. Our results suggest a novel mechanism through which PC1 cleavage may impact upon Wnt-dependent signaling and thereby modulate both developmental processes and cystogenesis.


Assuntos
Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/metabolismo , Canais de Cátion TRPP/química , Canais de Cátion TRPP/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Animais , Sítios de Ligação , Células CHO , Linhagem Celular , Núcleo Celular/metabolismo , Cricetinae , Cricetulus , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Ligantes , Análise de Sequência com Séries de Oligonucleotídeos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Rim Policístico Autossômico Dominante/etiologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Biologia de Sistemas , Fatores de Transcrição TCF/genética , Transfecção
9.
Pediatr Res ; 68(2): 91-8, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20421843

RESUMO

Renal hypoplasia, defined as abnormally small kidneys with normal morphology and reduced nephron number, is a common cause of pediatric renal failure and adult-onset disease. Genetic studies performed in humans and mutant mice have implicated a number of critical genes, in utero environmental factors and molecular mechanisms that regulate nephron endowment and kidney size. Here, we review current knowledge regarding the genetic contributions to renal hypoplasia with particular emphasis on the mechanisms that control nephron endowment in humans and mice.


Assuntos
Nefropatias/patologia , Rim , Néfrons , Animais , Diferenciação Celular , Linhagem da Célula , Sobrevivência Celular , Meio Ambiente , Feminino , Humanos , Rim/anormalidades , Rim/anatomia & histologia , Rim/embriologia , Nefropatias/etiologia , Nefropatias/genética , Mesoderma/anatomia & histologia , Mesoderma/fisiologia , Mutação , Néfrons/anormalidades , Néfrons/anatomia & histologia , Néfrons/embriologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Células-Tronco/citologia , Células-Tronco/fisiologia , Células Estromais/citologia , Células Estromais/fisiologia , Ureter/citologia
10.
J Am Soc Nephrol ; 19(1): 117-24, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18178801

RESUMO

The molecular signals that regulate growth and branching of the ureteric bud during formation of the renal collecting system are largely undefined. Members of the bone morphogenetic protein (BMP) family signal through the type I BMP receptor ALK3 to inhibit ureteric bud and collecting duct cell morphogenesis in vitro. We investigated the function of the BMP signaling pathway in vivo by generating a murine model of ALK3 deficiency restricted to the ureteric bud lineage (Alk3(UB-/-) mice). At the onset of branching morphogenesis, Alk3(UB-/-) kidneys are characterized by an abnormal primary (1 degrees ) ureteric bud branch pattern and an increased number of ureteric bud branches. However, during later stages of renal development, Alk3(UB-/-) kidneys have fewer ureteric bud branches and collecting ducts than wild-type kidneys. Postnatal Alk3(UB-/-) mice exhibit a dysplastic renal phenotype characterized by hypoplasia of the renal medulla, a decreased number of medullary collecting ducts, and abnormal expression of beta-catenin and c-MYC in medullary tubules. In summary, normal kidney development requires ALK3-dependent BMP signaling, which controls ureteric bud branching.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo I/fisiologia , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Túbulos Renais Coletores/fisiologia , Animais , Desenvolvimento Embrionário , Genes Reporter , Proteínas de Fluorescência Verde/genética , Rim/embriologia , Túbulos Renais Coletores/embriologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Ureter/embriologia , Ureter/fisiologia
11.
J Cell Biol ; 214(6): 677-90, 2016 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-27597759

RESUMO

Peroxisomes are metabolic organelles necessary for anabolic and catabolic lipid reactions whose numbers are highly dynamic based on the metabolic need of the cells. One mechanism to regulate peroxisome numbers is through an autophagic process called pexophagy. In mammalian cells, ubiquitination of peroxisomal membrane proteins signals pexophagy; however, the E3 ligase responsible for mediating ubiquitination is not known. Here, we report that the peroxisomal E3 ubiquitin ligase peroxin 2 (PEX2) is the causative agent for mammalian pexophagy. Expression of PEX2 leads to gross ubiquitination of peroxisomes and degradation of peroxisomes in an NBR1-dependent autophagic process. We identify PEX5 and PMP70 as substrates of PEX2 that are ubiquitinated during amino acid starvation. We also find that PEX2 expression is up-regulated during both amino acid starvation and rapamycin treatment, suggesting that the mTORC1 pathway regulates pexophagy by regulating PEX2 expression levels. Finally, we validate our findings in vivo using an animal model.


Assuntos
Autofagia , Proteínas de Membrana/metabolismo , Peroxissomos/enzimologia , Desnutrição Proteico-Calórica/enzimologia , Transportadores de Cassetes de Ligação de ATP/metabolismo , Aminoácidos/deficiência , Animais , Autofagia/efeitos dos fármacos , Modelos Animais de Doenças , Células HEK293 , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Complexos Multiproteicos/metabolismo , Fator 2 da Biogênese de Peroxissomos , Receptor 1 de Sinal de Orientação para Peroxissomos , Peroxissomos/efeitos dos fármacos , Peroxissomos/patologia , Desnutrição Proteico-Calórica/genética , Desnutrição Proteico-Calórica/patologia , Proteínas/metabolismo , Proteólise , Interferência de RNA , Ratos , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Fatores de Tempo , Transfecção , Ubiquitinação
12.
PLoS One ; 11(5): e0155143, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27163928

RESUMO

OBJECTIVE: Severe acute malnutrition (SAM) is a major cause of mortality in children under 5 years and is associated with hepatic steatosis. Bile acids are synthesized in the liver and participate in dietary fat digestion, regulation of energy expenditure, and immune responses. The aim of this work was to investigate whether SAM is associated with clinically relevant changes in bile acid homeostasis. DESIGN: An initial discovery cohort with 5 healthy controls and 22 SAM-patients was used to identify altered bile acid homeostasis. A follow up cohort of 40 SAM-patients were then studied on admission and 3 days after clinical stabilization to assess recovery in bile acid metabolism. Recruited children were 6-60 months old and admitted for SAM in Malawi. Clinical characteristics, feces and blood were collected on admission and prior to discharge. Bile acids, 7α-hydroxy-4-cholesten-3-one (C4) and FGF-19 were quantified. RESULTS: On admission, total serum bile acids were higher in children with SAM than in healthy controls and glycine-conjugates accounted for most of this accumulation with median and interquartile range (IQR) of 24.6 µmol/L [8.6-47.7] compared to 1.9 µmol/L [1.7-3.3] (p = 0.01) in controls. Total serum bile acid concentrations did not decrease prior to discharge. On admission, fecal conjugated bile acids were lower and secondary bile acids higher at admission compared to pre- discharge, suggesting increased bacterial conversion. FGF19 (Fibroblast growth factor 19), a marker of intestinal bile acid signaling, was higher on admission and was associated with decreased C4 concentrations as a marker of bile acid synthesis. Upon recovery, fecal calprotectin, a marker of intestinal inflammation, was lower. CONCLUSION: SAM is associated with increased serum bile acid levels despite reduced synthesis rates. In SAM, there tends to be increased deconjugation of bile acids and conversion from primary to secondary bile acids, which may contribute to the development of liver disease.


Assuntos
Ácidos e Sais Biliares/sangue , Colestenonas/metabolismo , Gorduras na Dieta/uso terapêutico , Fígado Gorduroso/prevenção & controle , Fatores de Crescimento de Fibroblastos/metabolismo , Desnutrição Aguda Grave/dietoterapia , Estudos de Casos e Controles , Pré-Escolar , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Fezes/química , Feminino , Homeostase/efeitos dos fármacos , Humanos , Lactente , Complexo Antígeno L1 Leucocitário/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Desnutrição Aguda Grave/metabolismo , Desnutrição Aguda Grave/patologia , Resultado do Tratamento
14.
Am J Clin Nutr ; 104(5): 1441-1449, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27655441

RESUMO

BACKGROUND: Diarrhea affects a large proportion of children with severe acute malnutrition (SAM). However, its etiology and clinical consequences remain unclear. OBJECTIVE: We investigated diarrhea, enteropathogens, and systemic and intestinal inflammation for their interrelation and their associations with mortality in children with SAM. DESIGN: Intestinal pathogens (n = 15), cytokines (n = 29), fecal calprotectin, and the short-chain fatty acids (SCFAs) butyrate and propionate were determined in children aged 6-59 mo (n = 79) hospitalized in Malawi for complicated SAM. The relation between variables, diarrhea, and death was assessed with partial least squares (PLS) path modeling. RESULTS: Fatal subjects (n = 14; 18%) were younger (mean ± SD age: 17 ± 11 compared with 25 ± 11 mo; P = 0.01) with higher prevalence of diarrhea (46% compared with 18%, P = 0.03). Intestinal pathogens Shigella (36%), Giardia (33%), and Campylobacter (30%) predominated, but their presence was not associated with death or diarrhea. Calprotectin was significantly higher in children who died [median (IQR): 1360 mg/kg feces (2443-535 mg/kg feces) compared with 698 mg/kg feces (1438-244 mg/kg feces), P = 0.03]. Butyrate [median (IQR): 31 ng/mL (112-22 ng/mL) compared with 2036 ng/mL (5800-149 ng/mL), P = 0.02] and propionate [median (IQR): 167 ng/mL (831-131 ng/mL) compared with 3174 ng/mL (5819-357 ng/mL), P = 0.04] were lower in those who died. Mortality was directly related to high systemic inflammation (path coefficient = 0.49), whereas diarrhea, high calprotectin, and low SCFA production related to death indirectly via their more direct association with systemic inflammation. CONCLUSIONS: Diarrhea, high intestinal inflammation, low concentrations of fecal SCFAs, and high systemic inflammation are significantly related to mortality in SAM. However, these relations were not mediated by the presence of intestinal pathogens. These findings offer an important understanding of inflammatory changes in SAM, which may lead to improved therapies. This trial was registered at www.controlled-trials.com as ISRCTN13916953.


Assuntos
Diarreia/mortalidade , Intestinos/microbiologia , Intestinos/parasitologia , Desnutrição Aguda Grave/mortalidade , Butiratos/análise , Pré-Escolar , Estudos de Coortes , Citocinas/análise , Diarreia/etiologia , Ácidos Graxos Voláteis/análise , Fezes/química , Fezes/microbiologia , Fezes/parasitologia , Fezes/virologia , Feminino , Humanos , Lactente , Inflamação , Intestinos/virologia , Complexo Antígeno L1 Leucocitário/análise , Malaui , Masculino , Prevalência , Desnutrição Aguda Grave/complicações
15.
PLoS One ; 8(2): e56062, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23409123

RESUMO

PURPOSE: Pax3cre-mediated deletion of fibroblast growth factor receptor 2 (Fgfr2) broadly in renal and urinary tract mesenchyme led to ureteric bud (UB) induction defects and vesicoureteral reflux (VUR), although the mechanisms were unclear. Here, we investigated whether Fgfr2 acts specifically in peri-Wolffian duct stroma (ST) to regulate UB induction and development of VUR and the mechanisms of Fgfr2 activity. METHODS: We conditionally deleted Fgfr2 in ST (Fgfr2(ST-/-)) using Tbx18cre mice. To look for ureteric bud induction defects in young embryos, we assessed length and apoptosis of common nephric ducts (CNDs). We performed 3D reconstructions and histological analyses of urinary tracts of embryos and postnatal mice and cystograms in postnatal mice to test for VUR. We performed in situ hybridization and real-time PCR in young embryos to determine mechanisms underlying UB induction defects. RESULTS: We confirmed that Fgfr2 is expressed in ST and that Fgfr2 was efficiently deleted in this tissue in Fgfr2(ST-/-) mice at embryonic day (E) 10.5. E11.5 Fgfr2(ST-/-) mice had randomized UB induction sites with approximately 1/3 arising too high and 1/3 too low from the Wolffian duct; however, apoptosis was unaltered in E12.5 mutant CNDs. While ureters were histologically normal, E15.5 Fgfr2(ST-/-) mice exhibit improper ureteral insertion sites into the bladder, consistent with the ureteric induction defects. While ureter and bladder histology appeared normal, postnatal day (P) 1 mutants had high rates of VUR versus controls (75% versus 3%, p = 0.001) and occasionally other defects including renal hypoplasia and duplex systems. P1 mutant mice also had improper ureteral bladder insertion sites and shortened intravesicular tunnel lengths that correlated with VUR. E10.5 Fgfr2(ST-/-) mice had decreases in Bmp4 mRNA in stromal tissues, suggesting a mechanism underlying the ureteric induction and VUR phenotypes. CONCLUSION: Mutations in FGFR2 could possibly cause VUR in humans.


Assuntos
Deleção de Genes , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Células Estromais/metabolismo , Ureter/anormalidades , Ureter/embriologia , Refluxo Vesicoureteral/genética , Ductos Mesonéfricos/metabolismo , Animais , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 4/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Knockout , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Bexiga Urinária/anormalidades , Bexiga Urinária/embriologia , Anormalidades Urogenitais/embriologia , Anormalidades Urogenitais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA