RESUMO
Human papillomaviruses (HPVs) are a large family of viruses with a capsid composed of the L1 and L2 proteins, which bind to receptors of the basal epithelial cells and promote virus entry. The majority of sexually active people become exposed to HPV and the virus is the most common cause of cervical cancer. Vaccines are available based on the L1 protein, which self-assembles and forms virus-like particles (VLPs) when expressed in yeast and insect cells. Although very effective, these vaccines are HPV type-restricted and their costs limit broad vaccination campaigns. Recently, vaccine candidates based on the conserved L2 epitope from serotypes 16, 18, 31, 33, 35, 6, 51, and 59 were shown to elicit broadly neutralizing anti-HPV antibodies. In this study, we tested whether E. coli outer membrane vesicles (OMVs) could be successfully decorated with L2 polytopes and whether the engineered OMVs could induce neutralizing antibodies. OMVs represent an attractive vaccine platform owing to their intrinsic adjuvanticity and their low production costs. We show that strings of L2 epitopes could be efficiently expressed on the surface of the OMVs and a polypeptide composed of the L2 epitopes from serotypes 18, 33, 35, and 59 provided a broad cross-protective activity against a large panel of HPV serotypes as determined using pseudovirus neutralization assay. Considering the simplicity of the OMV production process, our work provides a highly effective and inexpensive solution to produce universal anti-HPV vaccines.
RESUMO
Outer membrane vesicles (OMVs) produced by Gram-negative bacteria have emerged as a novel and flexible vaccine platform. OMVs can be decorated with foreign antigens and carry potent immunostimulatory components. Therefore, after their purification from the culture supernatant, they are ready to be formulated for vaccine use. It has been extensively demonstrated that immunization with engineered OMVs can elicit excellent antibody responses against the heterologous antigens. However, the definition of the conditions necessary to reach the optimal antibody titers still needs to be investigated. Here, we defined the protein concentrations required to induce antigen-specific antibodies, and the amount of antigen and OMVs necessary and sufficient to elicit saturating levels of antigen-specific antibodies. Since not all antigens can be expressed in OMVs, we also investigated the effectiveness of vaccines in which OMVs and purified antigens are mixed together without using any procedure for their physical association. Our data show that in most of the cases OMV-antigen mixtures are very effective in eliciting antigen-specific antibodies. This is probably due to the capacity of OMVs to "absorb" antigens, establishing sufficiently stable interactions that allow antigen-OMV co-presentation to the same antigen presenting cell. In those cases when antigen-OMV interaction is not sufficiently stable, the addition of alum to the formulation guarantees the elicitation of high titers of antigen-specific antibodies.
RESUMO
In situ vaccination (ISV) is a promising cancer immunotherapy strategy that consists of the intratumoral administration of immunostimulatory molecules (adjuvants). The rationale is that tumor antigens are abundant at the tumor site, and therefore, to elicit an effective anti-tumor immune response, all that is needed is an adjuvant, which can turn the immunosuppressive environment into an immunologically active one. Bacterial outer membrane vesicles (OMVs) are potent adjuvants since they contain several microbe-associated molecular patterns (MAMPs) naturally present in the outer membrane and in the periplasmic space of Gram-negative bacteria. Therefore, they appear particularly indicted for ISV. In this work, we first show that the OMVs from E. coli BL21(DE3)Δ60 strain promote a strong anti-tumor activity when intratumorally injected into the tumors of three different mouse models. Tumor inhibition correlates with a rapid infiltration of DCs and NK cells. We also show that the addition of neo-epitopes to OMVs synergizes with the vesicle adjuvanticity, as judged by a two-tumor mouse model. Overall, our data support the use of the OMVs in ISV and indicate that ISV efficacy can benefit from the addition of properly selected tumor-specific neo-antigens.
RESUMO
The vaccination campaign against SARS-CoV-2 relies on the world-wide availability of effective vaccines, with a potential need of 20 billion vaccine doses to fully vaccinate the world population. To reach this goal, the manufacturing and logistic processes should be affordable to all countries, irrespective of economical and climatic conditions. Outer membrane vesicles (OMVs) are bacterial-derived vesicles that can be engineered to incorporate heterologous antigens. Given the inherent adjuvanticity, such modified OMVs can be used as vaccines to induce potent immune responses against the associated proteins. Here, we show that OMVs engineered to incorporate peptides derived from the receptor binding motif (RBM) of the spike protein from SARS-CoV-2 elicit an effective immune response in vaccinated mice, resulting in the production of neutralizing antibodies (nAbs) with a titre higher than 1:300. The immunity induced by the vaccine is sufficient to protect the animals from intranasal challenge with SARS-CoV-2, preventing both virus replication in the lungs and the pathology associated with virus infection. Furthermore, we show that OMVs can be effectively decorated with the RBM of the Omicron BA.1 variant and that such engineered OMVs induce nAbs against Omicron BA.1 and BA.5, as measured using the pseudovirus neutralization infectivity assay. Importantly, we show that the RBM438-509 ancestral-OMVs elicited antibodies which efficiently neutralize in vitro both the homologous ancestral strain, the Omicron BA.1 and BA.5 variants with a neutralization titre ranging from 1:100 to 1:1500, suggesting its potential use as a vaccine targeting diverse SARS-CoV-2 variants. Altogether, given the convenience associated with the ease of engineering, production and distribution, our results demonstrate that OMV-based SARS-CoV-2 vaccines can be a crucial addition to the vaccines currently available.
RESUMO
A growing body of evidence supports the notion that the gut microbiome plays an important role in cancer immunity. However, the underpinning mechanisms remain to be fully elucidated. One attractive hypothesis envisages that among the T cells elicited by the plethora of microbiome proteins a few exist that incidentally recognize neo-epitopes arising from cancer mutations ("molecular mimicry (MM)" hypothesis). To support MM, the human probiotic Escherichia coli Nissle was engineered with the SIINFEKL epitope (OVA-E.coli Nissle) and orally administered to C57BL/6 mice. The treatment with OVA-E.coli Nissle, but not with wild type E. coli Nissle, induced OVA-specific CD8+ T cells and inhibited the growth of tumors in mice challenged with B16F10 melanoma cells expressing OVA. The microbiome shotgun sequencing and the sequencing of TCRs from T cells recovered from both lamina propria and tumors provide evidence that the main mechanism of tumor inhibition is mediated by the elicitation at the intestinal site of cross-reacting T cells, which subsequently reach the tumor environment. Importantly, the administration of Outer Membrane Vesicles (OMVs) from engineered E. coli Nissle, as well as from E. coli BL21(DE3)ΔompA, carrying cancer-specific T cell epitopes also elicited epitope-specific T cells in the intestine and inhibited tumor growth. Overall, our data strengthen the important role of MM in tumor immunity and assign a novel function of OMVs in host-pathogen interaction. Moreover, our results pave the way to the exploitation of probiotics and OMVs engineered with tumor specific-antigens as personalized mucosal cancer vaccines.
RESUMO
Genetic code redundancy would yield, on the average, the assignment of three codons for each of the natural amino acids. The fact that this number is observed only for incorporating Ile and to stop RNA translation still waits for an overall explanation. Through a Structural Bioinformatics approach, the wealth of information stored in the Protein Data Bank has been used here to look for unambiguous clues to decipher the rationale of standard genetic code (SGC) in assigning from one to six different codons for amino acid translation. Leu and Arg, both protected from translational errors by six codons, offer the clearest clue by appearing as the most abundant amino acids in protein-protein and protein-nucleic acid interfaces. Other SGC hidden messages have been sought by analyzing, in a protein structure framework, the roles of over- and under-protected amino acids.