Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 38(21): 6561-6570, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35580858

RESUMO

Combining amphiphilic block copolymers and phospholipids opens new opportunities for the preparation of artificial membranes. The chemical versatility and mechanical robustness of polymers together with the fluidity and biocompatibility of lipids afford hybrid membranes with unique properties that are of great interest in the field of bioengineering. Owing to its straightforwardness, the solvent-assisted method (SA) is particularly attractive for obtaining solid-supported membranes. While the SA method was first developed for lipids and very recently extended to amphiphilic block copolymers, its potential to develop hybrid membranes has not yet been explored. Here, we tailor the SA method to prepare solid-supported polymer-lipid hybrid membranes by combining a small library of amphiphilic diblock copolymers poly(dimethyl siloxane)-poly(2-methyl-2-oxazoline) and poly(butylene oxide)-block-poly(glycidol) with phospholipids commonly found in cell membranes including 1,2-dihexadecanoyl-sn-glycero-3-phosphocholine, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine, sphingomyelin, and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(glutaryl). The optimization of the conditions under which the SA method was applied allowed for the formation of hybrid polymer-lipid solid-supported membranes. The real-time formation and morphology of these hybrid membranes were evaluated using a combination of quartz crystal microbalance and atomic force microscopy. Depending on the type of polymer-lipid combination, significant differences in membrane coverage, formation of domains, and quality of membranes were obtained. The use of the SA method for a rapid and controlled formation of solid-supported hybrid membranes provides the basis for developing customized artificial hybrid membranes.


Assuntos
Membranas Artificiais , Polímeros , Bicamadas Lipídicas/química , Microscopia de Força Atômica , Fosfolipídeos/química , Polímeros/química , Solventes
2.
Biomacromolecules ; 22(7): 3005-3016, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34105950

RESUMO

Artificial membranes, as materials with biomimetic properties, can be applied in various fields, such as drug screening or bio-sensing. The solvent-assisted method (SA) represents a straightforward method to prepare lipid solid-supported membranes. It overcomes the main limitations of established membrane preparation methods, such as Langmuir-Blodgett (LB) or vesicle fusion. However, it has not yet been applied to create artificial membranes based on amphiphilic block copolymers, despite their enhanced mechanical stability compared to lipid-based membranes and bio-compatible properties. Here, we applied the SA method on different amphiphilic di- and triblock poly(dimethylsiloxane)-block-poly(2-methyl-2-oxazoline) (PDMS-b-PMOXA) copolymers and optimized the conditions to prepare artificial membranes on a solid support. The real-time membrane formation, the morphology, and the mechanical properties have been evaluated by a combination of atomic force microscopy and quartz crystal microbalance. Then, selected biomolecules including complementary DNA strands and an artificial deallylase metalloenzyme (ADAse) were incorporated into these membranes relying on the biotin-streptavidin technology. DNA strands served to establish the capability of these synthetic membranes to interact with biomolecules by preserving their correct conformation. The catalytic activity of the ADAse following its membrane anchoring induced the functionality of the biomimetic platform. Polymer membranes on solid support as prepared by the SA method open new opportunities for the creation of artificial membranes with tailored biomimetic properties and functionality.


Assuntos
Membranas Artificiais , Polímeros , Microscopia de Força Atômica , Solventes
3.
Polymers (Basel) ; 12(5)2020 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-32357541

RESUMO

Biological membranes, in addition to being a cell boundary, can host a variety of proteins that are involved in different biological functions, including selective nutrient transport, signal transduction, inter- and intra-cellular communication, and cell-cell recognition. Due to their extreme complexity, there has been an increasing interest in developing model membrane systems of controlled properties based on combinations of polymers and different biomacromolecules, i.e., polymer-based hybrid films. In this review, we have highlighted recent advances in the development and applications of hybrid biomimetic planar systems based on different polymeric species. We have focused in particular on hybrid films based on (i) polyelectrolytes, (ii) polymer brushes, as well as (iii) tethers and cushions formed from synthetic polymers, and (iv) block copolymers and their combinations with biomacromolecules, such as lipids, proteins, enzymes, biopolymers, and chosen nanoparticles. In this respect, multiple approaches to the synthesis, characterization, and processing of such hybrid films have been presented. The review has further exemplified their bioengineering, biomedical, and environmental applications, in dependence on the composition and properties of the respective hybrids. We believed that this comprehensive review would be of interest to both the specialists in the field of biomimicry as well as persons entering the field.

4.
J Phys Chem B ; 124(22): 4454-4465, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32383883

RESUMO

Controllable attachment of proteins to material surfaces is very attractive for many applications including biosensors, bioengineered scaffolds or drug screening. Especially, redox proteins have received considerable attention as a model system not only to understand the mechanism of electron transfer in biological systems, but also the development of novel biosensors. However, current research attempts suffer from denaturation of the protein after its attachment to solid substrates. Here, we present how lipid, polymer and hybrid membranes based on mixtures of lipids and copolymers on a solid support provide a more favorable environment to drive selective and functional attachment of a model redox protein, cytochrome c (cyt c). Polymer membranes provided chemical versatility to support covalent attachment of cyt c, whereas lipid membranes provided flexibility and biocompatibility to support insertion of cyt c through its hydrophobic part. Hybrid membranes combine the most promising characteristics of both lipids and polymers and allowed attachment of cyt c with both covalent attachment and insertion driven by hydrophobic interactions. We then investigated the effect of different attachment strategies on the accessibility and peroxidase-like activity of cyt c, in the presence of different membranes. The real-time combination of cyt c with the planar membranes was investigated by quartz crystal microbalance with dissipation. It was possible to selectively drive the insertion of cyt c into a specific lipid domain of hybrid membranes. In addition, protein accessibility and its functionality were dependent on the specificity of the combination strategy: covalent conjugation of cyt c to polymer and hybrid membranes promoted higher accessibility and supported higher peroxidase-like activity. Taking together, the combination of biomolecules with planar membranes can be modulated in such a way to improve the accessibility of the biomolecules and their resulting functionality for the development of efficient "active surfaces".


Assuntos
Citocromos c , Polímeros , Citocromos c/metabolismo , Lipídeos , Oxirredução , Peroxidases
5.
Nanoscale ; 12(3): 1551-1562, 2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31859312

RESUMO

Functionalization of hard or soft surfaces with, for example, ligands, enzymes or proteins, is an effective and practical methodology for the development of new applications. We report the assembly of two types of nanoreactors based upon poly(dimethylsiloxane)-block-poly(2-methyl-2-oxazoline) (PDMS-b-PMOXA) diblock copolymers as scaffold, uricase and lactoperoxidase as bio-catalysts located within the nanoreactors, and melittin as the biopores inserted into the hydrophobic shell. The nanoreactors were immobilized on poly(2-hydroxyethyl methacrylate)-co-poly(2-aminoethyl methacrylate hydrochloride) (PHEMA-co-P(2-AEMA·HCl) brushes-grafted wafer surfaces by utilizing the strong supramolecular interactions between biotin and streptavidin. The (PHEMA-co-P(2-AEMA·HCl) brushes on silicon surfaces were prepared by a surface initiating atom transfer radical polymerization (ATRP) "graft-from" technique. Cascade reactions between different surface-anchored nanoreactors were demonstrated by converting Amplex® Red to the fluorescent probe resorufin by using the H2O2 produced from uric acid and H2O. The detailed properties of the nanoreactors on the functionalized surface including the binding behaviours and cascade reactions were investigated using emission spectroscopy, transmission electron microscopy (TEM), light scattering (LS), atomic force microscopy (AFM) and a quartz crystal microbalance (QCM-D). The results are proof-of-principle for the preparation of catalytically functional engineered surface materials and lay the foundation for applying this advanced functional surface material in biosensing, implanting and antimicrobial materials preparation.


Assuntos
Enzimas Imobilizadas/química , Peróxido de Hidrogênio/química , Nanoestruturas/química , Oxazinas/química , Urato Oxidase/química , Catálise , Propriedades de Superfície
6.
Front Chem ; 6: 645, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30671429

RESUMO

Biological membranes constitute an interface between cells and their surroundings and form distinct compartments within the cell. They also host a variety of biomolecules that carry out vital functions including selective transport, signal transduction and cell-cell communication. Due to the vast complexity and versatility of the different membranes, there is a critical need for simplified and specific model membrane platforms to explore the behaviors of individual biomolecules while preserving their intrinsic function. Information obtained from model membrane platforms should make invaluable contributions to current and emerging technologies in biotechnology, nanotechnology and medicine. Amphiphilic block co-polymers are ideal building blocks to create model membrane platforms with enhanced stability and robustness. They form various supramolecular assemblies, ranging from three-dimensional structures (e.g., micelles, nanoparticles, or vesicles) in aqueous solution to planar polymer membranes on solid supports (e.g., polymer cushioned/tethered membranes,) and membrane-like polymer brushes. Furthermore, polymer micelles and polymersomes can also be immobilized on solid supports to take advantage of a wide range of surface sensitive analytical tools. In this review article, we focus on self-assembled amphiphilic block copolymer platforms that are hosting biomolecules. We present different strategies for harnessing polymer platforms with biomolecules either by integrating proteins or peptides into assemblies or by attaching proteins or DNA to their surface. We will discuss how to obtain synthetic structures on solid supports and their characterization using different surface sensitive analytical tools. Finally, we highlight present and future perspectives of polymer micelles and polymersomes for biomedical applications and those of solid-supported polymer membranes for biosensing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA