Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(23)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38069070

RESUMO

Primary mitochondrial diseases (PMDs) are complex group of metabolic disorders caused by genetically determined impairment of the mitochondrial oxidative phosphorylation (OXPHOS). The unique features of mitochondrial genetics and the pivotal role of mitochondria in cell biology explain the phenotypical heterogeneity of primary mitochondrial diseases and the resulting diagnostic challenges that follow. Some peculiar features ("red flags") may indicate a primary mitochondrial disease, helping the physician to orient in this diagnostic maze. In this narrative review, we aimed to outline the features of the most common mitochondrial red flags offering a general overview on the topic that could help physicians to untangle mitochondrial medicine complexity.


Assuntos
Medicina , Doenças Mitocondriais , Humanos , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Fosforilação Oxidativa
2.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36835313

RESUMO

Adolescent exposure to cannabinoids as a postnatal environmental insult may increase the risk of psychosis in subjects exposed to perinatal insult, as suggested by the two-hit hypothesis of schizophrenia. Here, we hypothesized that peripubertal Δ9-tetrahydrocannabinol (aTHC) may affect the impact of prenatal methylazoxymethanol acetate (MAM) or perinatal THC (pTHC) exposure in adult rats. We found that MAM and pTHC-exposed rats, when compared to the control group (CNT), were characterized by adult phenotype relevant to schizophrenia, including social withdrawal and cognitive impairment, as revealed by social interaction test and novel object recognition test, respectively. At the molecular level, we observed an increase in cannabinoid CB1 receptor (Cnr1) and/or dopamine D2/D3 receptor (Drd2, Drd3) gene expression in the prefrontal cortex of adult MAM or pTHC-exposed rats, which we attributed to changes in DNA methylation at key regulatory gene regions. Interestingly, aTHC treatment significantly impaired social behavior, but not cognitive performance in CNT groups. In pTHC rats, aTHC did not exacerbate the altered phenotype nor dopaminergic signaling, while it reversed cognitive deficit in MAM rats by modulating Drd2 and Drd3 gene expression. In conclusion, our results suggest that the effects of peripubertal THC exposure may depend on individual differences related to dopaminergic neurotransmission.


Assuntos
Dronabinol , Efeitos Tardios da Exposição Pré-Natal , Esquizofrenia , Animais , Feminino , Humanos , Gravidez , Ratos , Modelos Animais de Doenças , Dopamina/metabolismo , Dronabinol/toxicidade , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Receptores de Dopamina D3/metabolismo , Esquizofrenia/induzido quimicamente
3.
Pharmacol Res ; 174: 105938, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34655773

RESUMO

The recent shift in socio-political debates and growing liberalization of Cannabis use across the globe has raised concern regarding its impact on vulnerable populations such as adolescents. Concurrent with declining perception of Cannabis harms, more adolescents are using it daily in several countries and consuming marijuana strains with high content of psychotropic delta (9)-tetrahydrocannabinol (THC). These dual, related trends seem to facilitate the development of compromised social and cognitive performance at adulthood, which are described in preclinical and human studies. Cannabis exerts its effects via altering signalling within the endocannabinoid system (ECS), which modulates the stress circuitry during the neurodevelopment. In this context early interventions appear to circumvent the emergence of adult neurodevelopmental deficits. Accordingly, Cannabis sativa second-most abundant compound, cannabidiol (CBD), emerges as a potential therapeutic agent to treat neuropsychiatric disorders. We first focus on human and preclinical studies on the long-term effects induced by adolescent THC exposure as a "critical window" of enhanced neurophysiological vulnerability, which could be involved in the pathophysiology of schizophrenia and related primary psychotic disorders. Then, we focus on adolescence as a "window of opportunity" for early pharmacological treatment, as novel risk reduction strategy for neurodevelopmental disorders. Thus, we review current preclinical and clinical evidence regarding the efficacy of CBD in terms of positive, negative and cognitive symptoms treatment, safety profile, and molecular targets.


Assuntos
Canabinoides , Compostos Fitoquímicos , Psicoses Induzidas por Substâncias , Esquizofrenia , Adolescente , Animais , Canabinoides/efeitos adversos , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Humanos , Compostos Fitoquímicos/efeitos adversos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Psicoses Induzidas por Substâncias/tratamento farmacológico , Psicoses Induzidas por Substâncias/metabolismo , Esquizofrenia/induzido quimicamente , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo , Esquizofrenia/prevenção & controle
4.
Pharmacol Rep ; 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789891

RESUMO

BACKGROUND: Elevated brain levels of kynurenic acid (KYNA), a metabolite in the kynurenine pathway, are associated with cognitive dysfunctions, which are nowadays often considered as fundamental characteristics of several psychopathologies; however, the role of KYNA in mental illnesses, such as schizophrenia, is not fully elucidated. This study aimed to assess KYNA levels in the prefrontal cortex (PFC) of rats prenatally treated with methylazoxymethanol (MAM) acetate, i.e., a well-validated neurodevelopmental animal model of schizophrenia. The effects of an early pharmacological modulation of the endogenous cannabinoid system were also evaluated. METHODS: Pregnant Sprague-Dawley rats were treated with MAM (22 mg/kg, ip) or its vehicle at gestational day 17. Male offspring were treated with the cannabinoid CB1 receptor antagonist/inverse agonist AM251 (0.5 mg/kg/day, ip) or with the typical antipsychotic haloperidol (0.6 mg/kg/day, ip) from postnatal day (PND) 19 to PND39. The locomotor activity and cognitive performance were assessed in the novel object recognition test and the open field test in adulthood. KYNA levels in the PFC of prenatally MAM-treated rats were also assessed. RESULTS: A significant cognitive impairment was observed in prenatally MAM-treated rats (p < 0.01), which was associated with enhanced PFC KYNA levels (p < 0.05). The peripubertal AM251, but not haloperidol, treatment ameliorated the cognitive deficit (p < 0.05), by normalizing the PFC KYNA content in MAM rats. CONCLUSIONS: The present findings suggest that the cognitive deficit observed in MAM rats may be related to enhanced PFC KYNA levels which could be, in turn, mediated by the activation of cannabinoid CB1 receptor. These results further support the modulation of brain KYNA levels as a potential therapeutic strategy to ameliorate the cognitive dysfunctions in schizophrenia.

5.
Pharmacol Ther ; 241: 108279, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36103902

RESUMO

The etiopathogenesis of mental disorders is not fully understood and accumulating evidence support that clinical symptomatology cannot be assigned to a single gene mutation, but it involves several genetic factors. More specifically, a tight association between genes and environmental risk factors, which could be mediated by epigenetic mechanisms, may play a role in the development of mental disorders. Several data suggest that epigenetic modifications such as DNA methylation, post-translational histone modification and interference of microRNA (miRNA) or long non-coding RNA (lncRNA) may modify the severity of the disease and the outcome of the therapy. Indeed, the study of these mechanisms may help to identify patients particularly vulnerable to mental disorders and may have potential utility as biomarkers to facilitate diagnosis and treatment of psychiatric disorders. This article summarizes the most relevant preclinical and human data showing how epigenetic modifications can be central to the therapeutic efficacy of antidepressant and/or antipsychotic agents, as possible predictor of drugs response.


Assuntos
Antipsicóticos , Transtornos Mentais , MicroRNAs , Humanos , Transtornos Mentais/tratamento farmacológico , Transtornos Mentais/genética , Epigênese Genética , Metilação de DNA , Antipsicóticos/uso terapêutico
6.
Pharmaceutics ; 15(5)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37242611

RESUMO

BACKGROUND: To evaluate the neuroprotective effect of the topical ocular administration of fluoxetine (FLX) in a mouse model of acute retinal damage. METHODS: Ocular ischemia/reperfusion (I/R) injury in C57BL/6J mice was used to elicit retinal damage. Mice were divided into three groups: control group, I/R group, and I/R group treated with topical FLX. A pattern electroretinogram (PERG) was used as a sensitive measure of retinal ganglion cell (RGC) function. Finally, we analyzed the retinal mRNA expression of inflammatory markers (IL-6, TNF-α, Iba-1, IL-1ß, and S100ß) through Digital Droplet PCR. RESULTS: PERG amplitude values were significantly (p < 0.05) higher in the I/R-FLX group compared to the I/R group, whereas PERG latency values were significantly (p < 0.05) reduced in I/R-FLX-treated mice compared to the I/R group. Retinal inflammatory markers increased significantly (p < 0.05) after I/R injury. FLX treatment was able to significantly (p < 0.05) attenuate the expression of inflammatory markers after I/R damage. CONCLUSIONS: Topical treatment with FLX was effective in counteracting the damage of RGCs and preserving retinal function. Moreover, FLX treatment attenuates the production of pro-inflammatory molecules elicited by retinal I/R damage. Further studies need to be performed to support the use of FLX as neuroprotective agent in retinal degenerative diseases.

7.
Biomolecules ; 12(1)2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35053256

RESUMO

In agreement with the neurodevelopmental hypothesis of schizophrenia, prenatal exposure of Sprague-Dawley rats to the antimitotic agent methylazoxymethanol acetate (MAM) at gestational day 17 produces long-lasting behavioral alterations such as social withdrawal and cognitive impairment in adulthood, mimicking a schizophrenia-like phenotype. These abnormalities were preceded at neonatal age both by the delayed appearance of neonatal reflexes, an index of impaired brain maturation, and by higher 2-arachidonoylglycerol (2-AG) brain levels. Schizophrenia-like deficits were reversed by early treatment [from postnatal day (PND) 2 to PND 8] with the CB1 antagonist/inverse agonist AM251 (0.5 mg/kg/day). By contrast, early CB1 blockade affected the behavioral performance of control rats which was paralleled by enhanced 2-AG content in the prefrontal cortex (PFC). These results suggest that prenatal MAM insult leads to premorbid anomalies at neonatal age via altered tone of the endocannabinoid system, which may be considered as an early marker preceding the development of schizophrenia-like alterations in adulthood.


Assuntos
Acetato de Metilazoximetanol , Esquizofrenia , Animais , Modelos Animais de Doenças , Feminino , Gravidez , Ratos , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide , Esquizofrenia/induzido quimicamente , Esquizofrenia/tratamento farmacológico , Esquizofrenia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA