Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 612
Filtrar
1.
Pharmacol Rev ; 75(5): 885-958, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37164640

RESUMO

The cannabis derivative marijuana is the most widely used recreational drug in the Western world and is consumed by an estimated 83 million individuals (∼3% of the world population). In recent years, there has been a marked transformation in society regarding the risk perception of cannabis, driven by its legalization and medical use in many states in the United States and worldwide. Compelling research evidence and the Food and Drug Administration cannabis-derived cannabidiol approval for severe childhood epilepsy have confirmed the large therapeutic potential of cannabidiol itself, Δ9-tetrahydrocannabinol and other plant-derived cannabinoids (phytocannabinoids). Of note, our body has a complex endocannabinoid system (ECS)-made of receptors, metabolic enzymes, and transporters-that is also regulated by phytocannabinoids. The first endocannabinoid to be discovered 30 years ago was anandamide (N-arachidonoyl-ethanolamine); since then, distinct elements of the ECS have been the target of drug design programs aimed at curing (or at least slowing down) a number of human diseases, both in the central nervous system and at the periphery. Here a critical review of our knowledge of the goods and bads of the ECS as a therapeutic target is presented to define the benefits of ECS-active phytocannabinoids and ECS-oriented synthetic drugs for human health. SIGNIFICANCE STATEMENT: The endocannabinoid system plays important roles virtually everywhere in our body and is either involved in mediating key processes of central and peripheral diseases or represents a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of the components of this complex system, and in particular of key receptors (like cannabinoid receptors 1 and 2) and metabolic enzymes (like fatty acid amide hydrolase and monoacylglycerol lipase), will advance our understanding of endocannabinoid signaling and activity at molecular, cellular, and system levels, providing new opportunities to treat patients.


Assuntos
Canabidiol , Canabinoides , Cannabis , Alucinógenos , Humanos , Criança , Endocanabinoides/metabolismo , Canabidiol/uso terapêutico , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Canabinoides/metabolismo , Dronabinol , Cannabis/química , Cannabis/metabolismo , Proteínas de Transporte , Agonistas de Receptores de Canabinoides
2.
FASEB J ; 38(2): e23398, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38214938

RESUMO

In vitro systems are widely employed to assess the impact of dietary compounds on the gut microbiota and their conversion into beneficial bacterial metabolites. However, the complex fluid dynamics and multi-segmented nature of these systems can complicate the comprehensive analysis of dietary compound fate, potentially confounding physical dilution or washout with microbial catabolism. In this study, we developed fluid dynamics models based on sets of ordinary differential equations to simulate the behavior of an inert compound within two commonly used in vitro systems: the continuous two-stage PolyFermS system and the semi-continuous multi-segmented SHIME® system as well as into various declinations of those systems. The models were validated by investigating the fate of blue dextran, demonstrating excellent agreement between experimental and modeling data (with r2 values ranging from 0.996 to 0.86 for different approaches). As a proof of concept for the utility of fluid dynamics models in in vitro system, we applied generated models to interpret metabolomic data of procyanidin A2 (ProA2) generated from the addition of proanthocyanidin (PAC)-rich cranberry extract to both the PolyFermS and SHIME® systems. The results suggested ProA2 degradation by the gut microbiota when compared to the modeling of an inert compound. Models of fluid dynamics developed in this study provide a foundation for comprehensive analysis of gut metabolic data in commonly utilized in vitro PolyFermS and SHIME® bioreactor systems and can enable a more accurate understanding of the contribution of bacterial metabolism to the variability in the concentration of target metabolites.


Assuntos
Microbioma Gastrointestinal , Hidrodinâmica , Fermentação , Modelos Teóricos , Bactérias
3.
Cell Mol Life Sci ; 81(1): 37, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38214769

RESUMO

The mechanism underlying the transition from the pre-symptomatic to the symptomatic state is a crucial aspect of epileptogenesis. SYN2 is a member of a multigene family of synaptic vesicle phosphoproteins playing a fundamental role in controlling neurotransmitter release. Human SYN2 gene mutations are associated with epilepsy and autism spectrum disorder. Mice knocked out for synapsin II (SynII KO) are prone to epileptic seizures that appear after 2 months of age. However, the involvement of the endocannabinoid system, known to regulate seizure development and propagation, in the modulation of the excitatory/inhibitory balance in the epileptic hippocampal network of SynII KO mice has not been explored. In this study, we investigated the impact of endocannabinoids on glutamatergic and GABAergic synapses at hippocampal dentate gyrus granule cells in young pre-symptomatic (1-2 months old) and adult symptomatic (5-8 months old) SynII KO mice. We observed an increase in endocannabinoid-mediated depolarization-induced suppression of excitation in young SynII KO mice, compared to age-matched wild-type controls. In contrast, the endocannabinoid-mediated depolarization-induced suppression of inhibition remained unchanged in SynII KO mice at both ages. This selective alteration of excitatory synaptic transmission was accompanied by changes in hippocampal endocannabinoid levels and cannabinoid receptor type 1 distribution among glutamatergic and GABAergic synaptic terminals contacting the granule cells of the dentate gyrus. Finally, inhibition of type-1 cannabinoid receptors in young pre-symptomatic SynII KO mice induced seizures during a tail suspension test. Our results suggest that endocannabinoids contribute to maintaining network stability in a genetic mouse model of human epilepsy.


Assuntos
Transtorno do Espectro Autista , Epilepsia , Sinapsinas , Animais , Camundongos , Endocanabinoides , Camundongos Knockout , Fenótipo , Convulsões , Sinapses , Sinapsinas/genética
4.
Int J Obes (Lond) ; 48(2): 188-201, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38114812

RESUMO

BACKGROUND: Overweight and obesity are the consequence of a sustained positive energy balance. Twin studies show high heritability rates pointing to genetics as one of the principal risk factors. By 2022, genomic studies led to the identification of almost 300 obesity-associated variants that could help to fill the gap of the high heritability rates. The endocannabinoid system is a critical regulator of metabolism for its effects on the central nervous system and peripheral tissues. Fatty acid amide hydrolase (FAAH) is a key enzyme in the inactivation of one of the two endocannabinoids, anandamide, and of its congeners. The rs324420 variant within the FAAH gene is a nucleotide missense change at position 385 from cytosine to adenine, resulting in a non-synonymous amino acid substitution from proline to threonine in the FAAH enzyme. This change increases sensitivity to proteolytic degradation, leading to reduced FAAH levels and increased levels of anandamide, associated with obesity-related traits. However, association studies of this variant with metabolic parameters have found conflicting results. This work aims to perform a systematic review of the existing literature on the association of the rs324420 variant in the FAAH gene with obesity and its related traits. METHODS: A literature search was conducted in PubMed, Web of Science, and Scopus. A total of 645 eligible studies were identified for the review. RESULTS/CONCLUSIONS: After the identification, duplicate elimination, title and abstract screening, and full-text evaluation, 28 studies were included, involving 28 183 individuals. We show some evidence of associations between the presence of the variant allele and higher body mass index, waist circumference, fat mass, and waist-to-hip ratio levels and alterations in glucose and lipid homeostasis. However, this evidence should be taken with caution, as many included studies did not report a significant difference between genotypes. These discordant results could be explained mainly by the pleiotropy of the endocannabinoid system, the increase of other anandamide-like mediators metabolized by FAAH, and the influence of gene-environment interactions. More research is necessary to study the endocannabinoidomic profiles and their association with metabolic diseases.


Assuntos
Amidoidrolases , Ácidos Araquidônicos , Endocanabinoides , Obesidade , Alcamidas Poli-Insaturadas , Humanos , Endocanabinoides/genética , Endocanabinoides/metabolismo , Obesidade/genética , Fenótipo
5.
Allergy ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935036

RESUMO

BACKGROUND: Hereditary angioedema (HAE) is a rare genetic disorder characterized by local, self-limiting edema due to temporary increase in vascular permeability. HAE with normal C1 esterase inhibitor (C1INH) activity includes the form with mutations in the F12 gene encoding for coagulation factor XII (FXII-HAE) causing an overproduction of bradykinin (BK) leading to angioedema attack. BK binding to B2 receptors (BK2R) leads to an activation of phospholipase C (PLC) and subsequent generation of second messengers: diacylglycerols (DAGs) and possibly the endocannabinoids (eCBs), 2-arachidonoylglycerol (2-AG) and anandamide (AEA), and eCB-related N-acylethanolamines [palmitoylethanolamide (PEA) and oleoylethanolamide (OEA)]. To date, there are no data on the role of these lipid mediators in FXII-HAE. METHODS: Here, we analyzed plasma levels of PLC, DAGs, and eCBs in 40 patients with FXII-HAE and 40 sex- and age-matched healthy individuals. RESULTS: Plasma PLC activity was increased in FXII-HAE patients compared to controls. Concentrations of DAG 18:1-20:4, a lipid second messenger produced by PLC, were higher in FXII-HAE compared to controls, and positively correlated with PLC activity and cleaved high molecular kininogen (cHK). Also the concentrations of the DAG metabolite, 2-AG were altered in FXII-HAE. AEA and OEA were decreased in FXII-HAE patients compared to controls; by contrast, PEA, was increased. The levels of all tested mediators did not differ between symptomatic and asymptomatic patients. Moreover, C1INH-HAE patients had elevated plasma levels of PLC, which correlated with cHK, but the levels of DAGs and eCBs were the same as controls. CONCLUSIONS: BK overproduction and BKR2 activation are linked to alteration of PLCs and their metabolites in patients with FXII-HAE. Our results may pave way to investigations on the functions of these mediators in the pathophysiology of FXII-HAE, and provide new potential biomarkers and therapeutic targets.

6.
J Lipid Res ; 64(11): 100444, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37730163

RESUMO

White adipose tissue regulation is key to metabolic health, yet still perplexing. The chief endocannabinoid anandamide metabolite, prostaglandin F2α ethanolamide (PGF2αEA), inhibits adipogenesis, that is, the formation of mature adipocytes. We observed that adipocyte progenitor cells-preadipocytes-following treatment with PGF2αEA yielded larger pellet sizes. Thus, we hypothesized that PGF2αEA might augment preadipocyte proliferation. Cell viability MTT and crystal violet assays, cell counting, and 5-bromo-2'-deoxyuridine incorporation in cell proliferation ELISA analyses confirmed our prediction. Additionally, we discovered that PGF2αEA promotes cell cycle progression through suppression of the expression of cell cycle inhibitors, p21 and p27, as shown by flow cytometry and qPCR. Enticingly, concentrations of this compound that showed no visible effect on cell proliferation or basal transcriptional activity of peroxisome proliferator-activated receptor gamma could, in contrast, reverse the anti-proliferative and peroxisome proliferator-activated receptor gamma-transcription activating effects of rosiglitazone (Rosi). MTT and luciferase reporter examinations supported this finding. The PGF2αEA pharmaceutical analog, bimatoprost, was also investigated and showed very similar effects. Importantly, we suggest the implication of the mitogen-activated protein kinase pathway in these effects, as they were blocked by the selective mitogen-activated protein kinase kinase inhibitor, PD98059. We propose that PGF2αEA is a pivotal regulator of white adipose tissue plasticity, acting as a regulator of the preadipocyte pool in adipose tissue.


Assuntos
Endocanabinoides , PPAR gama , Camundongos , Animais , Endocanabinoides/farmacologia , PPAR gama/genética , PPAR gama/metabolismo , Adipogenia , Proliferação de Células , Prostaglandinas , Células 3T3-L1 , Diferenciação Celular
7.
Physiol Rev ; 96(4): 1593-659, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27630175

RESUMO

Apart from having been used and misused for at least four millennia for, among others, recreational and medicinal purposes, the cannabis plant and its most peculiar chemical components, the plant cannabinoids (phytocannabinoids), have the merit to have led humanity to discover one of the most intriguing and pleiotropic endogenous signaling systems, the endocannabinoid system (ECS). This review article aims to describe and critically discuss, in the most comprehensive possible manner, the multifaceted aspects of 1) the pharmacology and potential impact on mammalian physiology of all major phytocannabinoids, and not only of the most famous one Δ(9)-tetrahydrocannabinol, and 2) the adaptive pro-homeostatic physiological, or maladaptive pathological, roles of the ECS in mammalian cells, tissues, and organs. In doing so, we have respected the chronological order of the milestones of the millennial route from medicinal/recreational cannabis to the ECS and beyond, as it is now clear that some of the early steps in this long path, which were originally neglected, are becoming important again. The emerging picture is rather complex, but still supports the belief that more important discoveries on human physiology, and new therapies, might come in the future from new knowledge in this field.


Assuntos
Canabinoides/farmacologia , Cannabis , Endocanabinoides/metabolismo , Receptores de Canabinoides/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Humanos , Transdução de Sinais/fisiologia
8.
J Neuroinflammation ; 20(1): 108, 2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37149645

RESUMO

BACKGROUND: Frontotemporal dementia (FTD) is a heterogeneous group of early onset and progressive neurodegenerative disorders, characterized by degeneration in the frontal and temporal lobes, which causes deterioration in cognition, personality, social behavior and language. Around 45% of the cases are characterized by the presence of aggregates of the RNA-binding protein TDP-43. METHODS: In this study, we have used a murine model of FTD that overexpresses this protein exclusively in the forebrain (under the control of the CaMKIIα promoter) for several biochemical, histological and pharmacological studies focused on the endocannabinoid system. RESULTS: These mice exhibited at postnatal day 90 (PND90) important cognitive deficits, signs of emotional impairment and disinhibited social behaviour, which were, in most of cases, maintained during the first year of life of these animals. Motor activity was apparently normal, but FTD mice exhibited higher mortality. Their MRI imaging analysis and their ex-vivo histopathological evaluation proved changes compatible with atrophy (loss of specific groups of pyramidal neurons: Ctip2- and NeuN-positive cells) and inflammatory events (astroglial and microglial reactivities) in both cortical (medial prefrontal cortex) and subcortical (hippocampus) structures at PND90 and also at PND365. The analysis of the endocannabinoid system in these mice proved a decrease in the hydrolysing enzyme FAAH in the prefrontal cortex and the hippocampus, with an increase in the synthesizing enzyme NAPE-PLD only in the hippocampus, responses that were accompanied by modest elevations in anandamide and related N-acylethanolamines. The potentiation of these elevated levels of anandamide after the pharmacological inactivation of FAAH with URB597 resulted in a general improvement in behaviour, in particular in cognitive deterioration, associated with the preservation of pyramidal neurons of the medial prefrontal cortex and the CA1 layer of the hippocampus, and with the reduction of gliosis in both structures. CONCLUSIONS: Our data confirmed the potential of elevating the endocannabinoid tone as a therapy against TDP-43-induced neuropathology in FTD, limiting glial reactivity, preserving neuronal integrity and improving cognitive, emotional and social deficits.


Assuntos
Demência Frontotemporal , Doença de Pick , Masculino , Camundongos , Animais , Demência Frontotemporal/genética , Endocanabinoides/uso terapêutico , Camundongos Transgênicos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo
9.
Int J Obes (Lond) ; 47(7): 630-641, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37142736

RESUMO

OBJECTIVE: To determine whether the metabolic benefits of hypoabsorptive surgeries are associated with changes in the gut endocannabinoidome (eCBome) and microbiome. METHODS: Biliopancreatic diversion with duodenal switch (BPD-DS) and single anastomosis duodeno-ileal bypass with sleeve gastrectomy (SADI-S) were performed in diet-induced obese (DIO) male Wistar rats. Control groups fed a high-fat diet (HF) included sham-operated (SHAM HF) and SHAM HF-pair-weighed to BPD-DS (SHAM HF-PW). Body weight, fat mass gain, fecal energy loss, HOMA-IR, and gut-secreted hormone levels were measured. The levels of eCBome lipid mediators and prostaglandins were quantified in different intestinal segments by LC-MS/MS, while expression levels of genes encoding eCBome metabolic enzymes and receptors were determined by RT-qPCR. Metataxonomic (16S rRNA) analysis was performed on residual distal jejunum, proximal jejunum, and ileum contents. RESULTS: BPD-DS and SADI-S reduced fat gain and HOMA-IR, while increasing glucagon-like peptide-1 (GLP-1) and peptide tyrosine tyrosine (PYY) levels in HF-fed rats. Both surgeries induced potent limb-dependent alterations in eCBome mediators and in gut microbial ecology. In response to BPD-DS and SADI-S, changes in gut microbiota were significantly correlated with those of eCBome mediators. Principal component analyses revealed connections between PYY, N-oleoylethanolamine (OEA), N-linoleoylethanolamine (LEA), Clostridium, and Enterobacteriaceae_g_2 in the proximal and distal jejunum and in the ileum. CONCLUSIONS: BPD-DS and SADI-S caused limb-dependent changes in the gut eCBome and microbiome. The present results indicate that these variables could significantly influence the beneficial metabolic outcome of hypoabsorptive bariatric surgeries.


Assuntos
Desvio Biliopancreático , Derivação Gástrica , Hormônios Gastrointestinais , Microbioma Gastrointestinal , Obesidade Mórbida , Masculino , Ratos , Animais , Ratos Wistar , Cromatografia Líquida , RNA Ribossômico 16S , Espectrometria de Massas em Tandem , Desvio Biliopancreático/métodos , Duodeno/cirurgia , Gastrectomia , Tirosina , Obesidade Mórbida/cirurgia , Derivação Gástrica/métodos , Estudos Retrospectivos
10.
Pharmacol Res ; 189: 106683, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36736415

RESUMO

In spite of the huge advancements in both diagnosis and interventions, hormone refractory prostate cancer (HRPC) remains a major hurdle in prostate cancer (PCa). Metabolic reprogramming plays a key role in PCa oncogenesis and resistance. However, the dynamics between metabolism and oncogenesis are not fully understood. Here, we demonstrate that two multi-target natural products, cannabidiol (CBD) and cannabigerol (CBG), suppress HRPC development in the TRansgenic Adenocarcinoma of the Mouse Prostate (TRAMP) model by reprogramming metabolic and oncogenic signaling. Mechanistically, CBD increases glycolytic capacity and inhibits oxidative phosphorylation in enzalutamide-resistant HRPC cells. This action of CBD originates from its effect on metabolic plasticity via modulation of VDAC1 and hexokinase II (HKII) coupling on the outer mitochondrial membrane, which leads to strong shifts of mitochondrial functions and oncogenic signaling pathways. The effect of CBG on enzalutamide-resistant HRPC cells was less pronounced than CBD and only partially attributable to its action on mitochondria. However, when optimally combined, these two cannabinoids exhibited strong anti-tumor effects in TRAMP mice, even when these had become refractory to enzalutamide, thus pointing to their therapeutical potential against PCa.


Assuntos
Canabidiol , Neoplasias da Próstata , Humanos , Masculino , Camundongos , Animais , Canabidiol/farmacologia , Morte Celular , Mitocôndrias/metabolismo , Neoplasias da Próstata/metabolismo , Fosforilação Oxidativa , Carcinogênese/metabolismo , Hormônios/metabolismo , Canal de Ânion 1 Dependente de Voltagem/metabolismo
11.
Lipids Health Dis ; 22(1): 63, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37189092

RESUMO

BACKGROUND: Gut microbiota are involved in the onset and development of chronic intestinal inflammation. The recently described endocannabinoidome (eCBome), a diverse and complex system of bioactive lipid mediators, has been reported to play a role in various physio-pathological processes such as inflammation, immune responses and energy metabolism. The eCBome and the gut microbiome (miBIome) are closely linked and form the eCBome - miBIome axis, which may be of special relevance to colitis. METHODS: Colitis was induced in conventionally raised (CR), antibiotic-treated (ABX) and germ-free (GF) mice with dinitrobenzene sulfonic acid (DNBS). Inflammation was assessed by Disease Activity Index (DAI) score, body weight change, colon weight-length ratio, myeloperoxidase (MPO) activity and cytokine gene expression. Colonic eCBome lipid mediator concentrations were measured by HPLC-MS /MS. RESULTS: GF mice showed increased levels of anti-inflammatory eCBome lipids (LEA, OEA, DHEA and 13- HODE-EA) in the healthy state and higher MPO activity. DNBS elicited reduced inflammation in GF mice, having lower colon weight/length ratios and lower expression levels of Il1b, Il6, Tnfa and neutrophil markers compared to one or both of the other DNBS-treated groups. Il10 expression was also lower and the levels of several N-acyl ethanolamines and 13-HODE-EA levels were higher in DNBS-treated GF mice than in CR and ABX mice. The levels of these eCBome lipids negatively correlated with measures of colitis and inflammation. CONCLUSIONS: These results suggest that the depletion of the gut microbiota and subsequent differential development of the gut immune system in GF mice is followed by a compensatory effect on eCBome lipid mediators, which may explain, in part, the observed lower susceptibility of GF mice to develop DNBS-induced colitis.


Assuntos
Colite , Dinitrobenzenos , Camundongos , Animais , Dinitrobenzenos/efeitos adversos , Colite/induzido quimicamente , Colite/genética , Colite/metabolismo , Inflamação , Lipídeos
12.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36835313

RESUMO

Adolescent exposure to cannabinoids as a postnatal environmental insult may increase the risk of psychosis in subjects exposed to perinatal insult, as suggested by the two-hit hypothesis of schizophrenia. Here, we hypothesized that peripubertal Δ9-tetrahydrocannabinol (aTHC) may affect the impact of prenatal methylazoxymethanol acetate (MAM) or perinatal THC (pTHC) exposure in adult rats. We found that MAM and pTHC-exposed rats, when compared to the control group (CNT), were characterized by adult phenotype relevant to schizophrenia, including social withdrawal and cognitive impairment, as revealed by social interaction test and novel object recognition test, respectively. At the molecular level, we observed an increase in cannabinoid CB1 receptor (Cnr1) and/or dopamine D2/D3 receptor (Drd2, Drd3) gene expression in the prefrontal cortex of adult MAM or pTHC-exposed rats, which we attributed to changes in DNA methylation at key regulatory gene regions. Interestingly, aTHC treatment significantly impaired social behavior, but not cognitive performance in CNT groups. In pTHC rats, aTHC did not exacerbate the altered phenotype nor dopaminergic signaling, while it reversed cognitive deficit in MAM rats by modulating Drd2 and Drd3 gene expression. In conclusion, our results suggest that the effects of peripubertal THC exposure may depend on individual differences related to dopaminergic neurotransmission.


Assuntos
Dronabinol , Efeitos Tardios da Exposição Pré-Natal , Esquizofrenia , Animais , Feminino , Humanos , Gravidez , Ratos , Modelos Animais de Doenças , Dopamina/metabolismo , Dronabinol/toxicidade , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Receptores de Dopamina D3/metabolismo , Esquizofrenia/induzido quimicamente
13.
Lipids Health Dis ; 21(1): 9, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35027074

RESUMO

The discovery of the endocannabinoidome (eCBome) is evolving gradually with yet to be elucidated functional lipid mediators and receptors. The diet modulates these bioactive lipids and the gut microbiome, both working in an entwined alliance. Mounting evidence suggests that, in different ways and with a certain specialisation, lipid signalling mediators such as N-acylethanolamines (NAEs), 2-monoacylglycerols (2-MAGs), and N-acyl-amino acids (NAAs), along with endocannabinoids (eCBs), can modulate physiological mechanisms underpinning appetite, food intake, macronutrient metabolism, pain sensation, blood pressure, mood, cognition, and immunity. This knowledge has been primarily utilised in pharmacology and medicine to develop many drugs targeting the fine and specific molecular pathways orchestrating eCB and eCBome activity. Conversely, the contribution of dietary NAEs, 2-MAGs and eCBs to the biological functions of these molecules has been little studied. In this review, we discuss the importance of (Wh) olistic (E)ndocannabinoidome-Microbiome-Axis Modulation through (N) utrition (WHEN), in the management of obesity and related disorders.


Assuntos
Endocanabinoides/metabolismo , Microbioma Gastrointestinal , Fenômenos Fisiológicos da Nutrição , Obesidade/metabolismo , Animais , Endocanabinoides/fisiologia , Microbioma Gastrointestinal/fisiologia , Humanos , Fenômenos Fisiológicos da Nutrição/fisiologia , Obesidade/dietoterapia , Obesidade/etiologia , Receptores de Canabinoides/metabolismo
14.
Int J Mol Sci ; 23(16)2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36012687

RESUMO

Nonalcoholic fatty liver disease (NAFLD), alcohol-induced liver disease (ALD), and viral hepatitis are the main causes of morbidity and mortality related to chronic liver diseases (CLDs) worldwide. New therapeutic approaches to prevent or reverse these liver disorders are thus emerging. Although their etiologies differ, these CLDs all have in common a significant dysregulation of liver metabolism that is closely linked to the perturbation of the hepatic endocannabinoid system (eCBS) and inflammatory pathways. Therefore, targeting the hepatic eCBS might have promising therapeutic potential to overcome CLDs. Experimental models of CLDs and observational studies in humans suggest that cannabis and its derivatives may exert hepatoprotective effects against CLDs through diverse pathways. However, these promising therapeutic benefits are not yet fully validated, as the few completed clinical trials on phytocannabinoids, which are thought to hold the most promising therapeutic potential (cannabidiol or tetrahydrocannabivarin), remained inconclusive. Therefore, expanding research on less studied phytocannabinoids and their derivatives, with a focus on their mode of action on liver metabolism, might provide promising advances in the development of new and original therapeutics for the management of CLDs, such as NAFLD, ALD, or even hepatitis C-induced liver disorders.


Assuntos
Canabidiol , Canabinoides , Cannabis , Hepatopatias Alcoólicas , Hepatopatia Gordurosa não Alcoólica , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Cannabis/metabolismo , Endocanabinoides/metabolismo , Humanos , Hepatopatias Alcoólicas/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico
15.
EMBO J ; 36(14): 2107-2125, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28637794

RESUMO

Ca2+-sensor proteins are generally implicated in insulin release through SNARE interactions. Here, secretagogin, whose expression in human pancreatic islets correlates with their insulin content and the incidence of type 2 diabetes, is shown to orchestrate an unexpectedly distinct mechanism. Single-cell RNA-seq reveals retained expression of the TRP family members in ß-cells from diabetic donors. Amongst these, pharmacological probing identifies Ca2+-permeable transient receptor potential vanilloid type 1 channels (TRPV1) as potent inducers of secretagogin expression through recruitment of Sp1 transcription factors. Accordingly, agonist stimulation of TRPV1s fails to rescue insulin release from pancreatic islets of glucose intolerant secretagogin knock-out(-/-) mice. However, instead of merely impinging on the SNARE machinery, reduced insulin availability in secretagogin-/- mice is due to ß-cell loss, which is underpinned by the collapse of protein folding and deregulation of secretagogin-dependent USP9X deubiquitinase activity. Therefore, and considering the desensitization of TRPV1s in diabetic pancreata, a TRPV1-to-secretagogin regulatory axis seems critical to maintain the structural integrity and signal competence of ß-cells.


Assuntos
Regulação da Expressão Gênica , Células Secretoras de Insulina/fisiologia , Proteínas/metabolismo , Secretagoginas/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Sobrevivência Celular , Perfilação da Expressão Gênica , Humanos , Camundongos , Camundongos Knockout , Secretagoginas/deficiência , Análise de Célula Única
16.
FASEB J ; 34(3): 4253-4265, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32012340

RESUMO

The endocannabinoid (eCB) 2-arachidonoyl-gycerol (2-AG) modulates immune responses by activating cannabinoid receptors or through its multiple metabolites, notably eicosanoids. Thus, 2-AG hydrolysis inhibition might represent an interesting anti-inflammatory strategy that would simultaneously increase the levels of 2-AG and decrease those of eicosanoids. Accordingly, 2-AG hydrolysis inhibition increased 2-AG half-life in neutrophils. Under such setting, neutrophils, eosinophils, and monocytes synthesized large amounts of 2-AG and other monoacylglycerols (MAGs) in response to arachidonic acid (AA) and other unsaturated fatty acids (UFAs). Arachidonic acid and UFAs were ~1000-fold more potent than G protein-coupled receptor (GPCR) agonists. Triascin C and thimerosal, which, respectively, inhibit fatty acyl-CoA synthases and acyl-CoA transferases, prevented the UFA-induced MAG biosynthesis, implying glycerolipid remodeling. 2-AG and other MAG biosynthesis was preceded by that of the corresponding lysophosphatidic acid (LPA). However, we could not directly implicate LPA dephosphorylation in MAG biosynthesis. While GPCR agonists poorly induced 2-AG biosynthesis, they inhibited that induced by AA by 25%-50%, suggesting that 2-AG biosynthesis is decreased when leukocytes are surrounded by a pro-inflammatory entourage. Our data strongly indicate that human leukocytes use AA and UFAs to biosynthesize biologically significant concentrations of 2-AG and other MAGs and that hijacking the immune system with 2-AG hydrolysis inhibitors might diminish inflammation in humans.


Assuntos
Ácido Araquidônico/farmacologia , Ácidos Araquidônicos/metabolismo , Endocanabinoides/metabolismo , Ácidos Graxos Insaturados/metabolismo , Glicerídeos/metabolismo , Humanos , Hidrólise , Immunoblotting , Leucócitos , Lisofosfolipídeos/metabolismo , Monoglicerídeos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
17.
Mol Psychiatry ; 25(1): 22-36, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31735910

RESUMO

The evolution of human diets led to preferences toward polyunsaturated fatty acid (PUFA) content with 'Western' diets enriched in ω-6 PUFAs. Mounting evidence points to ω-6 PUFA excess limiting metabolic and cognitive processes that define longevity in humans. When chosen during pregnancy, ω-6 PUFA-enriched 'Western' diets can reprogram maternal bodily metabolism with maternal nutrient supply precipitating the body-wide imprinting of molecular and cellular adaptations at the level of long-range intercellular signaling networks in the unborn fetus. Even though unfavorable neurological outcomes are amongst the most common complications of intrauterine ω-6 PUFA excess, cellular underpinnings of life-long modifications to brain architecture remain unknown. Here, we show that nutritional ω-6 PUFA-derived endocannabinoids desensitize CB1 cannabinoid receptors, thus inducing epigenetic repression of transcriptional regulatory networks controlling neuronal differentiation. We found that cortical neurons lose their positional identity and axonal selectivity when mouse fetuses are exposed to excess ω-6 PUFAs in utero. Conversion of ω-6 PUFAs into endocannabinoids disrupted the temporal precision of signaling at neuronal CB1 cannabinoid receptors, chiefly deregulating Stat3-dependent transcriptional cascades otherwise required to execute neuronal differentiation programs. Global proteomics identified the immunoglobulin family of cell adhesion molecules (IgCAMs) as direct substrates, with DNA methylation and chromatin accessibility profiling uncovering epigenetic reprogramming at >1400 sites in neurons after prolonged cannabinoid exposure. We found anxiety and depression-like behavioral traits to manifest in adult offspring, which is consistent with genetic models of reduced IgCAM expression, to suggest causality for cortical wiring defects. Overall, our data uncover a regulatory mechanism whose disruption by maternal food choices could limit an offspring's brain function for life.


Assuntos
Encéfalo/efeitos dos fármacos , Dieta Ocidental/efeitos adversos , Epigênese Genética/efeitos dos fármacos , Animais , Ansiedade , Encéfalo/metabolismo , Metilação de DNA/efeitos dos fármacos , Depressão , Dieta , Suplementos Nutricionais , Endocanabinoides/metabolismo , Epigênese Genética/genética , Epigenômica/métodos , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Ácidos Graxos Insaturados/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Gravidez , Receptor CB1 de Canabinoide/efeitos dos fármacos
18.
Pharmacol Res ; 164: 105357, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33285233

RESUMO

Perinatal exposure to Δ9-tetrahydrocannabinol (THC) affects brain development and might increase the incidence of psychopathology later in life, which seems to be related to a dysregulation of endocannabinoid and/or dopaminergic systems. We here evaluated the transcriptional regulation of the genes encoding for the cannabinoid CB1 receptor (Cnr1) and the dopamine D2 receptor (Drd2) in perinatal THC-(pTHC) exposed male rats, focusing on the role of DNA methylation analyzed by pyrosequencing. Simultaneously, the molecular and behavioral abnormalities at two different time points (i.e., neonatal age and adulthood) and the potential preventive effect of peripubertal treatment with cannabidiol, a non-euphoric component of Cannabis, were assessed. The DRD2 methylation was also evaluated in a cohort of subjects with schizophrenia. We observed an increase in both Cnr1 and Drd2 mRNA levels selectively in the prefrontal cortex of adult pTHC-exposed rats with a consistent reduction in DNA methylation at the Drd2 regulatory region, paralleled by social withdrawal and cognitive impairment which were reversed by cannabidiol treatment. These adult abnormalities were preceded at neonatal age by delayed appearance of neonatal reflexes, higher Drd2 mRNA and lower 2-arachidonoylglycerol (2-AG) brain levels, which persisted till adulthood. Alterations of the epigenetic mark for DRD2 were also found in subjects with schizophrenia. Overall, reported data add further evidence to the dopamine-cannabinoid interaction in terms of DRD2 and CNR1 dysregulation which could be implicated in the pathogenesis of schizophrenia spectrum disorders, suggesting that cannabidiol treatment may normalize pTHC-induced psychopathology by modulating the altered dopaminergic activity.


Assuntos
Dronabinol/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal , Receptor CB1 de Canabinoide/genética , Receptores de Dopamina D2/genética , Esquizofrenia/genética , Animais , Comportamento Animal/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Feminino , Humanos , Masculino , Troca Materno-Fetal , Córtex Pré-Frontal/metabolismo , Gravidez , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley
19.
Appetite ; 156: 104973, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32971226

RESUMO

The regulation of food intake and eating behaviours involves interactions between different systems. The endocannabinoidome, comprising several fatty acid-derived mediators, plays a central role in the regulation of food intake. Alterations of this system have been suggested to intervene in the aetiology of eating disorders. This study aimed to examine the associations between non-pathological eating behaviours and circulating endocannabinoidome mediators in a heterogeneous human population. Plasma 2-monoacyl-glycerol and N-acyl-ethanolamine congeners were measured by LC-MS/MS in a sample of 190 men and women. Eating behaviours were assessed using the Three-Factor Eating Questionnaire (TFEQ) and the Intuitive Eating Scale-2 (IES-2). Following adjustment for body mass index and age, plasma levels of omega-3 polyunsaturated fatty acid-derived 2-monoacyl-glycerols, 2-eicosapentaenoyl-glycerol (2-EPG) and 2-docosapentaenoyl-glycerol (2-DPG), were associated with higher intuitive eating scores (0.15 ≤ rho ≤ 0.20; p < 0.05). These associations were independent of the dietary intake of the fatty acid precursors of these 2-monoacyl-glycerols. However, almost no association was found between plasma levels of N-acyl-ethanolamine congeners and the TFEQ or the IES-2 scores. The results of the present study suggest the association of 2-monoacyl-glycerols, especially 2-EPG and 2-DPG, in the regulation of intuitive eating and the potential implication therein of bioactive lipids.


Assuntos
Ácidos Graxos Ômega-3 , Espectrometria de Massas em Tandem , Cromatografia Líquida , Ingestão de Alimentos , Comportamento Alimentar , Feminino , Humanos , Masculino
20.
Phytother Res ; 35(1): 517-529, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32996187

RESUMO

Fish oil (FO) and phytocannabinoids have received considerable attention for their intestinal anti-inflammatory effects. We investigated whether the combination of FO with cannabigerol (CBG) and cannabidiol (CBD) or a combination of all three treatments results in a more pronounced intestinal antiinflammatory action compared to the effects achieved separately. Colitis was induced in mice by 2,4-dinitrobenzenesulfonic acid (DNBS). CBD and CBG levels were detected and quantified by liquid chromatography coupled with time of flight mass spectrometry and ion trap mass spectrometry (LC-MS-IT-TOF). Endocannabinoids and related mediators were assessed by LC-MS. DNBS increased colon weight/colon length ratio, myeloperoxidase activity, interleukin-1ß, and intestinal permeability. CBG, but not CBD, given by oral gavage, ameliorated DNBS-induced colonic inflammation. FO pretreatment (at the inactive dose) increased the antiinflammatory action of CBG and rendered oral CBD effective while reducing endocannabinoid levels. Furthermore, the combination of FO, CBD, and a per se inactive dose of CBG resulted in intestinal anti-inflammatory effects. Finally, FO did not alter phytocannabinoid levels in the serum and in the colon. By highlighting the apparent additivity between phytocannabinoids and FO, our preclinical data support a novel strategy of combining these substances for the potential development of a treatment of inflammatory bowel disease.


Assuntos
Anti-Inflamatórios/uso terapêutico , Canabidiol/uso terapêutico , Canabinoides/uso terapêutico , Colite/tratamento farmacológico , Óleos de Peixe/uso terapêutico , Animais , Antioxidantes/uso terapêutico , Colite/induzido quimicamente , Inflamação/tratamento farmacológico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos ICR
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA