Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Nanosci Nanotechnol ; 15(12): 9766-71, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26682410

RESUMO

Electro-optical switching can be achieved by changing the optical absorption of metal nanoparticles by adding or removing electrical charge, corresponding to increased, respectively, decreased electron density. In this work a different approach is taken by changing the photoluminescence properties as a function of electrical charge on gold nanoparticles. Whereas larger gold nanoparticles (diameter d = 5 and 10 nm), exhibiting a plasmon resonance peak in the absorption spectrum, were used to measure changes of the optical absorption spectrum upon electrical charging, for smaller gold nanoparticles (d = 2 and 5 nm) electrical charging was observed via changes of the photoluminescence. Increase and decrease in photoluminescence was observed at positive and negative applied potentials, respectively. The relation between changes of optical absorption and photoluminescence for the 5 nm particles by electrical charging provides information on the influence of the charge state on the electronic properties and therefore the optical transition probability. The reported observation that not only the optical absorption, but also the photoluminescence is affected by alteration of the electrical charge onto gold nanoparticles may open a new way towards electro-optical switching and bio-sensing.


Assuntos
Ouro/química , Medições Luminescentes , Nanopartículas Metálicas/química , Eletricidade
2.
Nature ; 451(7174): 46-8, 2008 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-18066049

RESUMO

An unambiguous determination of the three-dimensional structure of nanoparticles is challenging. Electron tomography requires a series of images taken for many different specimen orientations. This approach is ideal for stable and stationary structures. But ultrasmall nanoparticles are intrinsically structurally unstable and may interact with the incident electron beam, constraining the electron beam density that can be used and the duration of the observation. Here we use aberration-corrected scanning transmission electron microscopy, coupled with simple imaging simulation, to determine with atomic resolution the size, three-dimensional shape, orientation and atomic arrangement of size-selected gold nanoclusters that are preformed in the gas phase and soft-landed on an amorphous carbon substrate. The structures of gold nanoclusters containing 3096 atoms can be identified with either Ino-decahedral, cuboctahedral or icosahedral geometries. Comparison with theoretical modelling of the system suggests that the structures are consistent with energetic considerations. The discovery that nanoscale gold particles function as active and selective catalysts for a variety of important chemical reactions has provoked much research interest in recent years. We believe that the detailed structure information we provide will help to unravel the role of these nanoclusters in size- and structure-specific catalytic reactions. We note that the technique will be of use in investigations of other supported ultrasmall metal cluster systems.

3.
Nanotechnology ; 24(31): 315202, 2013 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-23851583

RESUMO

Dynamical control of the luminescence of quantum dots is highly important for technology in the field of telecommunication, displays, and photovoltaics. In this work we use an a-Si:H solar cell structure in which CdSe quantum dots are sandwiched. By applying a positive potential over the device, charge carriers generated in the quantum dots are transported to the a-Si:H layer and transformed into electrical energy, changing the luminescence intensity with a switching time lower than 60 ms. This is a promising new step towards using quantum dots in optical switching devices.

4.
Nanotechnology ; 20(13): 135203, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19420489

RESUMO

We present an investigation of the photoluminescence of CdSe/ZnS quantum dots at high light intensity and in low magnetic fields. Upon increasing the magnetic field up to 90 G, the photoluminescence intensity drops. When decreasing the magnetic field back to zero the photoluminescence drop remains present. A plausible explanation is the Zeeman splitting of defect-associated energy levels under the influence of a magnetic field. The defect-trapped electrons may then be positioned at a metastable level, thereby reducing the number of recombinations. This effect may be used to control the luminescence of quantum dots.


Assuntos
Compostos de Cádmio/química , Campos Eletromagnéticos , Luminescência , Pontos Quânticos , Compostos de Selênio/química , Sulfetos/química , Compostos de Zinco/química , Luz , Análise Espectral
5.
J Phys Condens Matter ; 28(3): 035303, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26732742

RESUMO

Controlling the plasmon resonance frequency of metal nanostructures holds promise for both fundamental and applied research in optics. The plasmon resonance frequency depends on the number of free electrons in the metal. By adding or removing electrons to a metal nano-object, the plasmon resonance frequency shifts. In this study we indirectly change the number of free electrons in gold nanoparticles by applying an electrical potential difference over a heterostructure consisting of a ZnO layer with embedded gold nanoparticles. The potential difference induces shifts of defect energy levels in the ZnO by the electric field. This results in an exchange of electrons between particles and matrix which in turn modifies the gold nanoparticle plasmon properties. The positive charge shifts the ZnO optical absorption peak from 377 nm to 386 nm and shifts the nanoparticle plasmon from 549 nm to 542 nm. This electro-optical effect is a promising way to obtain fast optical switching in a solid state composition.

6.
Phys Rev Lett ; 101(24): 246103, 2008 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-19113636

RESUMO

We present a new approach to quantify the mass and 3D shape of nanoparticles on supports, using size-selected nanoclusters as mass standards in scanning transmission electron microscope. Through quantitative image intensity analysis, we show that the integrated high angle annular dark field intensities of size-selected gold clusters soft-landed on graphite display a monotonic dependence on the cluster size as far as approximately 6500 atoms. We applied this mass standard to study gold nanoparticles prepared by thermal vapor deposition and by colloidal wet chemistry, and from which we deduced the shapes of these two types of nanoparticles as expected.

7.
Phys Rev Lett ; 100(23): 236105, 2008 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-18643522

RESUMO

The structural and morphological changes occurring in an ensemble of vapor deposited palladium nanoclusters have been studied after several hydrogenation cycles with x-ray diffraction, extended x-ray-absorption fine structure spectroscopy, Rutherford backscattering spectrometry, and STM. Initial hydrogenation increased the cluster size, a result that is attributed to hydrogen-induced Ostwald ripening. This phenomenon originates from the higher mobility of palladium atoms resulting from the low sublimation energy of the palladium hydride as compared to that of the palladium metal. The universality of this phenomenon makes it important for the application of future nanostructured hydrogen storage materials.

8.
J Chem Phys ; 125(8): 084704, 2006 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-16965036

RESUMO

The production of stable cluster arrays on smooth surfaces has several potential technological applications. We report a study of the pinning of size-selected palladium nanoclusters on the graphite surface. The clusters formed during gas aggregation in vacuum are projected with sufficient kinetic energy to create a defect in the graphite surface. The energy necessary to create such an immobilizing defect is investigated as a function of the palladium cluster size. The palladium pinning energy is found to deviate from the simple binary collision model as appropriate to previously reported silver and gold results. This finding is in agreement with the deviation of nickel clusters and points to the influence of the interatomic cluster bonding on the mechanics of the collision.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA