Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Ann Rheum Dis ; 83(5): 608-623, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38290829

RESUMO

OBJECTIVES: The current work aimed to provide a comprehensive single-cell landscape of lupus nephritis (LN) kidneys, including immune and non-immune cells, identify disease-associated cell populations and unravel their participation within the kidney microenvironment. METHODS: Single-cell RNA and T cell receptor sequencing were performed on renal biopsy tissues from 40 patients with LN and 6 healthy donors as controls. Matched peripheral blood samples from seven LN patients were also sequenced. Multiplex immunohistochemical analysis was performed on an independent cohort of 60 patients and validated using flow cytometric characterisation of human kidney tissues and in vitro assays. RESULTS: We uncovered a notable enrichment of CD163+ dendritic cells (DC3s) in LN kidneys, which exhibited a positive correlation with the severity of LN. In contrast to their counterparts in blood, DC3s in LN kidney displayed activated and highly proinflammatory phenotype. DC3s showed strong interactions with CD4+ T cells, contributing to intrarenal T cell clonal expansion, activation of CD4+ effector T cell and polarisation towards Th1/Th17. Injured proximal tubular epithelial cells (iPTECs) may orchestrate DC3 activation, adhesion and recruitment within the LN kidneys. In cultures, blood DC3s treated with iPTECs acquired distinct capabilities to polarise Th1/Th17 cells. Remarkably, the enumeration of kidney DC3s might be a potential biomarker for induction treatment response in LN patients. CONCLUSION: The intricate interplay involving DC3s, T cells and tubular epithelial cells within kidneys may substantially contribute to LN pathogenesis. The enumeration of renal DC3 holds potential as a valuable stratification feature for guiding LN patient treatment decisions in clinical practice.


Assuntos
Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Humanos , Biomarcadores/metabolismo , Células Dendríticas/metabolismo , Rim/patologia , Lúpus Eritematoso Sistêmico/patologia , Nefrite Lúpica/patologia , Células Th1 , Antígenos de Diferenciação Mielomonocítica , Antígenos CD
2.
Kidney Int ; 103(5): 886-902, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36804379

RESUMO

Progressive fibrosis is a hallmark of chronic kidney disease, but we lack effective treatments to halt this destructive process. Micropeptides (peptides of no more than 100 amino acids) encoded by small open reading frames represent a new class of eukaryotic regulators. Here, we describe that the micropeptide regulator of ß-oxidation (MOXI) regulates kidney fibrosis. MOXI expression was found to be up-regulated in human fibrotic kidney disease, and this correlated with the degree of fibrosis and loss of kidney function. MOXI was expressed in the cytoplasm and mitochondria of cultured tubular epithelial cells and translocated to the nucleus upon Transforming Growth Factor-ß1 stimulation. Deletion of Moxi protected mice against fibrosis and inflammation in the folic acid and unilateral ureteral obstruction models. As a potential molecular therapy, treatment with an antisense MOXI oligonucleotide effectively knocked-down MOXI expression and protected against kidney fibrosis in both models. Bimolecular fluorescence complementation identified the enzyme N-acetyltransferase 14 (Nat14) and transcription factor c-Jun as MOXI binding partners. The MOXI/Nat14/c-Jun complex enhances basal and Transforming Growth Factor-ß1 induced collagen I gene promoter activity. Phosphorylation at T49 is required for MOXI nuclear localization and for complex formation with Nat14 and c-Jun. Furthermore, mice with a MoxiT49A point mutation were protected in the models of kidney fibrosis. Thus, our studies demonstrate a key role for the micropeptide MOXI in kidney fibrosis and identify a new function of MOXI in forming a transcriptional complex with Nat14 and c-Jun.


Assuntos
Nefropatias , Obstrução Ureteral , Animais , Humanos , Camundongos , Acetiltransferases/genética , Acetiltransferases/metabolismo , Fibrose , Rim/patologia , Nefropatias/patologia , Mitocôndrias/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Obstrução Ureteral/complicações , Obstrução Ureteral/genética , Obstrução Ureteral/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Micropeptídeos
3.
Biol Pharm Bull ; 44(5): 714-723, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33952827

RESUMO

Ischemia-reperfusion injury (IRI) is the major cause of acute kidney injury (AKI). The previous studies demonstrated that Oridonin can protect kidney against IRI-induced AKI, but the underlying molecular mechanism is unclear. In this study, it showed that Oridonin significantly improved kidney damage, and inhibited the expression of interleukin (IL)-1ß, IL-6, tumor necrosis factor (TNF)-α and MCP-1, as well as macrophage marker F4/80 in kidney and the secretion of inflammatory cytokins in serum of AKI mice in vivo. In addition, Oridonin also effectively reduced the expression and secretion of lipopolysaccharide (LPS)-induced inflammatory factors in macrophage cell line RAW264.7 in vitro. Notably, Oridonin strongly downregulated Mincle and AKT/nuclear factor-kappaB (NF-κB) signaling both in vivo and in vitro, and the results of cellular recovery experiments of overexpression of Mincle in macrophage suggested that Oridonin suppressed inflammatory response of macrophage through inhibiting Mincle, which may be the underlying mechanism of Oridonin improving injury in kidney of AKI mice. In summary, the above results indicated that Oridonin can protect kidney from IRI-induced inflammation and injury by inhibiting the expression of Mincle in macrophage.


Assuntos
Injúria Renal Aguda/prevenção & controle , Diterpenos do Tipo Caurano/farmacologia , Macrófagos/efeitos dos fármacos , Traumatismo por Reperfusão/tratamento farmacológico , Injúria Renal Aguda/imunologia , Injúria Renal Aguda/patologia , Animais , Modelos Animais de Doenças , Diterpenos do Tipo Caurano/uso terapêutico , Humanos , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Rim/irrigação sanguínea , Rim/efeitos dos fármacos , Rim/imunologia , Rim/patologia , Lectinas Tipo C/antagonistas & inibidores , Lectinas Tipo C/metabolismo , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Masculino , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Camundongos , Células RAW 264.7 , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/imunologia
4.
Am J Physiol Cell Physiol ; 317(4): C800-C812, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31365289

RESUMO

Orexin is a peptide neurotransmitter released in the globus pallidus. Morphological evidence reveals that both orexin 1 receptor (OX1R) and orexin 2 receptor (OX2R) exist in the globus pallidus. Here we showed that bilateral microinjection of both orexin-A and orexin-B into the globus pallidus alleviated motor deficits in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonian mice. Further in vivo extracellular single-unit recording revealed that the basal spontaneous firing rate of the globus pallidus neurons in MPTP parkinsonian mice was slower than that of normal mice. Application of orexin-A or orexin-B significantly increased the spontaneous firing rate of pallidal neurons. The influx of Ca2+ through the L-type Ca2+ channel is the major mechanism involved in orexin-induced excitation in the globus pallidus. Orexin-A-induced increase in firing rate of pallidal neurons in MPTP parkinsonian mice was stronger than that of normal mice. Orexin-A exerted both electrophysiological and behavioral effects mainly via OX1R, and orexin-B exerted the effects via OX2R. Endogenous orexins modulated the excitability of globus pallidus neurons mainly through OX1R. The present behavioral and electrophysiological results suggest that orexins ameliorate parkinsonian motor deficits through increasing the spontaneous firing of globus pallidus neurons.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Orexinas/farmacologia , Animais , Modelos Animais de Doenças , Globo Pálido/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Doença de Parkinson/tratamento farmacológico
5.
Ren Fail ; 41(1): 555-566, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31234688

RESUMO

5/6 Nephrectomy (PNx) on rat and mouse mimics renal failure after loss of kidney function in human, and it has been widely used in CKD researches. However, existing methods for PNx model construction present high mortality of animals after modeling due to hemorrhage and infection in or after surgery. Here, we report a novel and highly efficient PNx modeling method to simulate conventional 5/6 nephrectomy, which significantly reduced the mortality of animals and simplified the modeling procedures. In this novel modeling method, we directly ligated the upper and lower poles of left kidney after removal the right kidney 1 week later (l-PNx), which leads to necrosis of ligated upper and lower poles of the kidney and mimics the conventional 5/6 nephrectomy (c-PNx). After modeling 4 and 12 weeks, the serum creatinine, BUN and proteinuria levels were strongly increased in both c-PNx and l-PNx model. Importantly, compared with the c-PNx, l-PNx model present more severe renal fibrosis estimated by Masson staining, IHC and western blotting. The results showed that the protein levels of α-SMA were significantly increased in the kidney of c-PNx and l-PNx models, but more increase was found in l-PNx model. It is noteworthy that, compared with c-PNx model, the survival rate of l-PNx model was markedly increased. In summary, we established a novel and efficient 5/6 nephrectomy model, which can mimic conventional 5/6 nephrectomy to construct a renal fibrosis and renal failure mouse model, that is conducive to mechanism and treatment researches of CKD.


Assuntos
Modelos Animais de Doenças , Rim/patologia , Nefrectomia/métodos , Animais , Fibrose , Humanos , Rim/cirurgia , Ligadura/métodos , Ligadura/veterinária , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nefrectomia/veterinária
6.
J Neurochem ; 147(3): 380-394, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30102759

RESUMO

Orexin is a member of neuropeptides which is involved in the central motor control. The substantia nigra pars compacta (SNc) is an important nucleus participating in motor control under both physiological and pathological conditions. Morphological studies reveal that orexinergic neurons located in lateral hypothalamus innervate the SNc. Both orexin-1 receptors (OX1 R) and orexin-2 receptors (OX2 R) are expressed in the SNc. To investigate the effects of orexins on SNc, single unit in vivo extracellular recordings and behavioral tests were performed in this study. Micro-pressure administration of orexin A and orexin B significantly increased the spontaneous firing rate of nigral DAergic neurons by 65.87 ± 7.73% and 90.49 ± 17.83%, respectively. The excitatory effects of orexin A on nigral DAergic neurons were mainly mediated by OX1 R, while OX2 R were involved in the increase in firing rate induced by orexin B. Selectively blocking OX1 R and OX2 R significantly decreased the firing rate of nigral DAergic neurons by 36.77 ± 6.26% and 32.04 ± 6.12%, respectively, which suggested that endogenous orexins modulated the spontaneous firing activity of nigral DAergic neurons. Finally, both elevated body swing test and haloperidol-induced postural behavioral test showed that unilateral microinjection of orexin A and orexin B induced significantly contralateral-biased swing and deflection behavior. Meanwhile, the specific OX1 R and OX2 R antagonists produced opposite effects. The present electrophysiological and behavioral studies suggested that orexins increased the firing activity of nigral DAergic neurons and participated in central motor control. Open Practices Open Science: This manuscript was awarded with the Open Materials Badge. For more information see: https://cos.io/our-services/open-science-badges/.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Orexinas/farmacologia , Substância Negra/efeitos dos fármacos , Animais , Comportamento Animal , Antagonistas de Dopamina/farmacologia , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Haloperidol/farmacologia , Masculino , Microinjeções , Atividade Motora/efeitos dos fármacos , Receptores de Orexina/biossíntese , Receptores de Orexina/genética , Orexinas/administração & dosagem , Equilíbrio Postural/efeitos dos fármacos , Ratos , Ratos Wistar , Substância Negra/citologia
7.
Sheng Li Xue Bao ; 68(5): 699-707, 2016 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-27778037

RESUMO

The globus pallidus occupies a critical position in the indirect pathway of the basal ganglia circuit, which regulates movement under both normal and pathological conditions. Previous studies have shown that the globus pallidus receives dopaminergic innervation from the axonal collaterals of nigrostriatal fibers. Both dopamine D1 and D2 like receptors are expressed in the globus pallidus. The present study was aimed to investigate the direct in vivo electrophysiological effects of dopamine D2 like receptors in the globus pallidus of both normal and parkinsonian rats. Extracellular recordings of multi-barreled microelectrode were used in the present study. In normal rats, micro-pressure ejection of dopamine D2 like receptor agonist quinpirole induced different effects on the firing rate of globus pallidus neurons. In 24 out of the 61 pallidal neurons, quinpirole significantly increased the firing rate by (62.7 ± 11.2)%. In another 16 neurons, quinpirole decreased the spontaneous firing rate by (37.5 ± 2.9)%. Furthermore, co-application of dopamine D2 like receptor antagonist, sulpride, blocked quinpirole-induced modulation of the firing rate of pallidal neurons. On the 6-hydroxydopamine (6-OHDA) lesioned side of parkinsonian rats, quinpirole increased the firing rate in 25 out of the 47 pallidal neurons by (64.2 ± 10.1)%, while decreased the firing rate in 11 neurons by (51.9 ± 6.2)%. Our findings suggest that activation of pallidal dopamine D2 like receptors may bidirectionally modulate the spontaneous firing of globus pallidus neurons in both normal and parkinsonian rats.


Assuntos
Globo Pálido/metabolismo , Transtornos Parkinsonianos/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Animais , Modelos Animais de Doenças , Dopamina , Masculino , Neurônios , Oxidopamina , Ratos
8.
Asian-Australas J Anim Sci ; 28(6): 827-39, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25925060

RESUMO

A total of 144 weaned crossed pigs were used in a 42-d trial to explore the effects of different concentrations/combinations of benzoic acid and thymol on growth performance and gut characteristics in weaned pigs. Pigs were randomly allotted to 4 dietary treatments: i) control (C), basal diet, ii) C+1,000 mg/kg benzoic acid+100 mg/kg thymol (BT1), iii) C+1,000 mg/kg benzoic acid+200 mg/kg thymol (BT2) and, iv) C+2,000 mg/kg benzoic acid+100 mg/kg thymol (BT3). Relative to the control, pigs fed diet BT3 had lower diarrhoea score during the overall period (p<0.10) and improved feed to gain ratio between days 1 to 14 (p<0.05), which was accompanied by improved apparent total tract digestibility of ether extract, Ca and crude ash (p<0.05), and larger lipase, lactase and sucrose activities in the jejunum (p<0.05) at d 14 and d 42. Similarly, relative to the control, pigs fed diet BT3 had higher counts for Lactobacillus spp in digesta of ileum at d 14 (p<0.05), and pigs fed diets BT1, BT2, or BT3 also had higher counts of Bacillus spp in digesta of caecum at d 14 (p<0.05), and lower concentration of ammonia nitrogen in digesta of caecum at d 14 and d 42 (p<0.05). Finally, pigs fed diet BT3 had higher concentration of butyric acid in digesta of caecum at d 42 (p<0.05), and a larger villus height:crypt depth ratio in jejunum and ileum at d 14 (p<0.05) than pigs fed the control diet. In conclusion, piglets fed diet supplementation with different concentrations/combinations of benzoic acid and thymol could improve feed efficiency and diarrhoea, and improve gut microfloral composition. The combination of 2,000 mg/kg benzoic acid+100 mg/kg thymol produced better effects than other treatments in most measurements.

9.
Anim Nutr ; 16: 299-305, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38371473

RESUMO

Fat is one of the three macronutrients and a significant energy source for piglets. It plays a positive role in maintaining intestinal health and improving production performance. During the weaning period, physiological, stress and diet-related factors influence the absorption of fat in piglets, leading to damage to the intestinal barrier, diarrhea and even death. Signaling pathways, such as fatty acid translocase (CD36), pregnane X receptor (PXR), and AMP-dependent protein kinase (AMPK), are responsible for regulating intestinal fat uptake and maintaining intestinal barrier function. Therefore, this review mainly elaborates on the reasons for diarrhea induced by insufficient fat absorption and related signaling pathways in weaned-piglets, with an emphasis on the intestinal fat absorption disorder. Moreover, we focus on introducing nutritional strategies that can promote intestinal fat absorption in piglets with insufficient fat absorption-related diarrhea, such as lipase, amino acids, and probiotics.

10.
J Nutr Biochem ; 129: 109637, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38574828

RESUMO

Adequate dietary L-tryptophan (Trp) governs intestinal homeostasis in piglets. However, the defensive role of Trp in the diet against enterotoxigenic Escherichia coli F4 (K88) in pigs is still poorly understood. Here, sixty (6.15 ± 1.52 kg, 24-day-old, Duroc × Landrace × Yorkshire) weaned piglets were used for an E. coli F4 attack test in a 2 × 2 factorial design. The growth (ADG, ADFI, GH), immune factors (IL-10, IgA, IgG, IgM), Trp metabolite 5-HT, intestinal morphology (jejunal and colonic VH), mRNA expression of ß-defensins (jejunal BD-127, BD-119, ileal BD-1, BD-127), and abundance of beneficial microorganisms in the colon (Prevotella 9, Lactobacillus, Phascolarctobacterium, Faecalibacterium) were higher in the piglets in the HT (High Trp) and HTK (High Trp, K88) groups than in the LT (Low Trp) and LTK (Low Trp, K88) groups (P<.05), while FCR, diarrhea rate, diarrhea index, serum Trp, Kyn, IDO, D-LA, ET, and abundance of harmful microorganisms in the colon (Spirochaetes, Fusobacteria, Prevotella, Christensenellaceae R7) were lower in the HT and HTK groups than in the LT and LTK groups (P<.05). High Trp reduced the expression of virulence genes (K88 and LT) after E. coli F4 attack (P<.05). The IL-6, TNF-α was lower in the HTK group than in the LT, LTK group (P<.05). In short, a diet containing 0.35% Trp protected piglets from enterotoxigenic E. coli F4 (K88) via Trp metabolism promoting BD expression in the intestinal mucosa, which improved growth and intestinal health.


Assuntos
Escherichia coli Enterotoxigênica , Triptofano , Desmame , beta-Defensinas , Animais , Triptofano/metabolismo , Suínos , beta-Defensinas/metabolismo , Infecções por Escherichia coli/veterinária , Doenças dos Suínos/microbiologia , Doenças dos Suínos/prevenção & controle , Intestinos/microbiologia , Ração Animal , Microbioma Gastrointestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Dieta/veterinária
11.
Anim Nutr ; 17: 297-311, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38800731

RESUMO

Post-weaning diarrhea (PWD) is a globally significant threat to the swine industry. Historically, antibiotics as well as high doses of zinc oxide and copper sulfate have been commonly used to control PWD. However, the development of bacterial resistance and environmental pollution have created an interest in alternative strategies. In recent years, the research surrounding these alternative strategies and the mechanisms of piglet diarrhea has been continually updated. Mechanically, diarrhea in piglets is a result of an imbalance in intestinal fluid and electrolyte absorption and secretion. In general, enterotoxigenic Escherichia coli (ETEC) and diarrheal viruses are known to cause an imbalance in the absorption and secretion of intestinal fluids and electrolytes in piglets, resulting in diarrhea when Cl- secretion-driven fluid secretion surpasses absorptive capacity. From a perspective of feedstuffs, factors that contribute to imbalances in fluid absorption and secretion in the intestines of weaned piglets include high levels of crude protein (CP), stimulation by certain antigenic proteins, high acid-binding capacity (ABC), and contamination with deoxynivalenol (DON) in the diet. In response, efforts to reduce CP levels in diets, select feedstuffs with lower ABC values, and process feedstuffs using physical, chemical, and biological approaches are important strategies for alleviating PWD in piglets. Additionally, the diet supplementation with additives such as vitamins and natural products can also play a role in reducing the diarrhea incidence in weaned piglets. Here, we examine the mechanisms of absorption and secretion of intestinal fluids and electrolytes in piglets, summarize nutritional strategies to control PWD in piglets from the perspective of feeds, and provide new insights towards future research directions.

12.
Vet Sci ; 10(2)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36851383

RESUMO

At present, probiotics are being extensively evaluated for their efficacy as an alternative to antibiotics, and their safety in livestock production. In this study, 128 (Duroc, Yorkshire and Landrace) pigs with an average initial body weight of 28.38 ± 0.25 kg were allocated to four dietary treatments in a randomized complete-block design. There were eight pens per treatment, with four pigs per pen (two barrows and two gilts). Dietary treatments included: (1) control diet; (2) control diet + 0.05% complex probiotic; (3) control diet + 0.1% complex probiotic; (4) control diet + 0.2% complex probiotic. During the 28-day experimental period, the feeding of 0.1% complex probiotic in the diet increased body weight and average daily gain (p < 0.05). The addition of complex probiotics decreased total cholesterol and glucose concentrations in the blood (p < 0.01). Acetate concentrations in the blood increased from 0.1% complex probiotic in the diet (p < 0.05), while NH3 and H2S emissions in the feces decreased (p < 0.05) from 0.1% or 0.2% complex probiotic in the diet. In conclusion, dietary complex probiotic supplementation changed the composition of intestinal short-chain fatty acids and improved growth performance for growing pigs.

13.
Animals (Basel) ; 13(23)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38066999

RESUMO

One hundred and twenty-eight boars and gilts of the Duroc × Landrace × Yorkshire variety with an initial body weight (BW) of 52.49 ± 0.48 kg were used in a randomized complete block design for a 63-day experiment. The four treatment groups were: control diet (CON), CON + 0.2% soybean oligosaccharides (SBOS), CON + 0.4% SBOS, and CON + 0.8% SBOS. The results showed that the average daily weight gain (ADG) was significantly higher in the 0.8% SBOS group than in the CON group on days 0-63 (p < 0.05). Compared with the CON group, adding 0.8% SBOS to the diet significantly increased the carcass weight, dressing percentage, and carcass lean percentage, but decreased the average backfat depth of growing-finishing pigs (p < 0.05). Adding different concentrations (0.2%, 0.4%, and 0.8%) of SBOS to the diet can significantly increase the concentrations of acetate, propionate, and butyrate in feces (p < 0.05). The activities of malic enzyme and fatty acid synthase in the 0.8% group were significantly lower than those in the 0.2% and CON groups (p < 0.05). In summary, 0.8% SBOS supplementation to growing-finishing pigs' diets can reduce lipid deposition and increase ADG.

14.
Animals (Basel) ; 13(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37238025

RESUMO

We investigated the effects of dietary supplementation of lactic acid bacteria on the immune and antioxidant performance of weaned pigs. A total of 128 Duroc × Landrace × Yorkshire piglets weaned on day 28 with an average body weight of 8.95 ± 1.15 kg were selected and randomly divided into four treatment groups according to body weight and sex for a 28-day study. The four dietary treatments were basal diet (CON), and CON with 0.05% (LJ0.05), 0.1% (LJ0.1), and 0.2% (LJ0.2) Lactobacillus johnsonii RS-7, respectively. The lowest feed-to-gain ratio (F:G) was found when LJ0.1 was added to the diet. The addition of compound lactic acid bacteria to the diet increased the concentrations of TP, ALB, IgA, and IgM on day 14 and IgG, IgA, and IgM on day 28 (p < 0.05) in the blood, with trait values greater for pigs fed LJ0.1 than CON pigs (p < 0.05). Concentrations of antioxidants (CAT, T-AOC, MDA, T-SOD, and GSH) in serum, intestinal mucosa, spleen, liver, and pancreas improved. In summary, dietary supplementation of Lactobacillus johnsonii RS-7 improved the antioxidant and immune function of weaned piglets.

15.
Antioxidants (Basel) ; 12(10)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37891931

RESUMO

Early weaning of piglets was prone to increase reactive oxygen species, disrupt the redox balance, decrease antioxidant capacity, cause oxidative stress and intestinal oxidative damage, and lead to diarrhea in piglets. This research aimed to study dietary taurine (Tau) supplementation at a level relieving intestinal oxidative damage in early-weaned piglets. A total of 48 piglets were assigned to four groups of 12 individuals and fed a basal diet with 0.0% Tau (CON), 0.2% Tau (L-Tau), 0.3% Tau (M-Tau), or 0.4% Tau (H-Tau), respectively. The animal experiment lasted 30 days. The final weight, weight gain, average daily gain, and feed conversion rate increased with the increase in dietary Tau (Linear, p < 0.05; Quadratic p < 0.05), while the diarrhea index of piglets decreased with the increase in dietary Tau (Linear, p < 0.05). Serum malondialdehyde, nitric oxide (NO), D-lactose, and oxidized glutathione (GSSG) concentrations decreased with the increase in dietary Tau (Linear, p < 0.05). The O2•- and •OH clearance rate in serum, liver, and jejunum mucosa increased with the increase in dietary Tau (Linear, p < 0.05). Serum superoxide dismutase (SOD) activity, glutathione peroxidase (GPX) activity, catalase (CAT) activity, and peroxidase (POD) activity and total antioxidant capacity increased with the increase in dietary Tau (Linear, p < 0.05). The serum glutathione (GSH) concentration and the ratio of GSH to GSSG increased with the increase in dietary Tau (Linear, p < 0.05). The POD and glutathione synthase activity in the liver and jejunum mucosa increased with the increase in dietary Tau (Linear, p < 0.05). The mRNA abundances of HO-1 and GPX1 in the H-Tau group were higher than that in the L-Tau, M-Tau, and CON groups (p < 0.05). The mRNA abundances of SOD1 and Nrf2 in the M-Tau and H-Tau groups were higher than in the L-Tau and CON groups (p < 0.05). The mRNA abundance of SOD2 in the L-Tau, M-Tau, and H-Tau groups was higher than in the CON group (p < 0.05). The VH and the ratio of VH to CD of jejunum and ileum increased with the increase in dietary Tau (Linear, p < 0.05). The mRNA abundances of occludens 1 and claudin 1 in the H-Tau group were higher than that in the CON, L-Tau, and M-Tau (p < 0.05). The mRNA abundance of occludin in the L-Tau, M-Tau, and H-Tau groups was higher than that in CON (p < 0.05). The abundance of Firmicutes increased with the increase in dietary Tau (Linear, p < 0.05), while Proteobacteria and Spirochaetota decreased with the increase in dietary Tau (Linear, p < 0.05). Collectively, dietary supplementation of 0.3% and 0.4% Tau in feed could significantly improve the growth performance and enhance the antioxidant capacity of piglets.

16.
Front Immunol ; 14: 1095740, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36865557

RESUMO

Intestinal health is closely associated with overall animal health and performance and, consequently, influences the production efficiency and profit in feed and animal production systems. The gastrointestinal tract (GIT) is the main site of the nutrient digestive process and the largest immune organ in the host, and the gut microbiota colonizing the GIT plays a key role in maintaining intestinal health. Dietary fiber (DF) is a key factor in maintaining normal intestinal function. The biological functioning of DF is mainly achieved by microbial fermentation, which occurs mainly in the distal small and large intestine. Short-chain fatty acids (SCFAs), the main class of microbial fermentation metabolites, are the main energy supply for intestinal cells. SCFAs help to maintain normal intestinal function, induce immunomodulatory effects to prevent inflammation and microbial infection, and are vital for the maintenance of homeostasis. Moreover, because of its distinct characteristics (e.g. solubility), DF is able to alter the composition of the gut microbiota. Therefore, understanding the role that DF plays in modulating gut microbiota, and how it influences intestinal health, is essential. This review gives an overview of DF and its microbial fermentation process, and investigates the effect of DF on the alteration of gut microbiota composition in pigs. The effects of interaction between DF and the gut microbiota, particularly as they relate to SCFA production, on intestinal health are also illustrated.


Assuntos
Microbioma Gastrointestinal , Suínos , Animais , Intestinos , Trato Gastrointestinal , Fibras na Dieta , Nutrientes
17.
Front Genet ; 13: 838863, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35601494

RESUMO

Objective: The commonalities and differences regarding immune states between glomerular and tubulointerstitial compartments of IgA nephropathy (IgAN) remains largely undetermined. We aim to perform bioinformatic analysis for providing a comprehensive insight into the characteristics of immune cells and associated molecular mechanisms in IgAN. Materials and Methods: We performed integrated bioinformatic analyses by using IgAN-related datasets from the Gene Expression Omnibus database. First, the differentially expressed genes (DEGs) were identified and subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Then, CIBERSORT was employed to determine the landscape of infiltrating immune cells in both glomerular and tubulointerstitial compartments of IgAN patients, followed by Pearson's correlation analysis and principal component analysis (PCA). Finally, commonly shared DEGs between glomerular and tubulointerstitial entities were recognized, followed by correlation analyses to identify the dominant commonly shared DEGs associated with immune cell infiltration in IgAN. Results: GO and KEGG enrichment analyses showed apparently distinct biological processes in the glomerular and tubulointerstitial compartments of IgAN. In addition, CIBERSORT analyses revealed a clear trend of increasing proportions of M1 macrophage and M2 macrophage in the glomerular compartment while noticeably higher proportions of resting CD4+ memory T cells and M2 macrophages in the tubulointerstitial compartments. The PCA analyses showed that the varying composition of immune cells in both glomerular and tubulointerstitial entities was compelling to distinguish IgAN patients from healthy living controls. In addition, 21 commonly shared DEGs between glomerular and tubulointerstitial entities were recognized as key regulators in the pathogenesis of IgAN, among which the enhanced hemoglobin subunit beta (HBB) gene expression was found to be positively associated with M2 macrophage in the glomerular compartment and resting CD4+ memory T cells in the tubulointerstitial compartment. Most importantly, FBJ murine osteosarcoma viral oncogene homolog B (FOSB) gene deficiency was recognized as the dominant alteration in promoting M2 macrophage infiltration in the glomerular compartment of IgAN. Conclusion: The findings from our current study for the first time reveal commonalities and differences regarding immune states between glomerular and tubulointerstitial compartments, as well as decode the essential role of M2 macrophages and associated molecular patterns within the microenvironments of IgAN.

18.
Animals (Basel) ; 12(19)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36230298

RESUMO

An experiment was conducted to examine the effect of meal frequency on growth performance, nutrient digestibility, carcass quality, and lipid metabolism in growing−finishing pigs. Sixty-four Duroc × Landrace × Yorkshire barrows and gilts (26.40 ± 2.10 kg initial body weight) were used in a 112-d experiment in a randomized complete blocked design. The two treatments were the free-access feed group (FA) and the three meals per day group (M3), respectively. The result showed that the average daily feed intake (ADFI) and F: G of the FA group were significantly higher than that in the M3 group during the whole experiment (p < 0.05). Reducing meal frequency also decreased the concentration of triglycerides and urea nitrogen but increased the concentration of insulin and free fatty acids in the blood (p < 0.05). Reducing meal frequency decreased compositions of backfat, belly, and fatty pieces but increased compositions of ham, longissimus muscle, and lean pieces in the carcass (p < 0.05). Greater enzyme activities of ME and FAS and higher mRNA expression of FAS and PPARγ were found in the LM of FA pigs compared with M3 pigs (p < 0.05). In summary, a lower meal frequency improves feed efficiency by regulating lipid metabolism and reducing fat deposition.

19.
Front Genet ; 13: 934555, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36035169

RESUMO

Objective: The currently established diagnostic and prognostic tools for diabetic kidney disease (DKD) have limitations, which demands the necessity to find new genes and pathways associated with diagnosis and treatment. Our study aims to reveal the gene expression alteration and discover critical genes involved in the development of DKD, thus providing novel diagnostic molecular markers and therapeutic targets. Materials and methods: The differences of infiltrating immune cells within kidney were compared between healthy living donors and DKD patients. Besides, differentially expressed genes (DEGs) within kidney from healthy living donor, early stage DKD and advanced stage DKD samples were detected. Furthermore, the weighted co-expressed network (WGCNA) and protein-protein interaction (PPI) network were constructed, followed by recognition of core hub genes and module analysis. Receiver operating characteristic (ROC) curve analysis was implemented to determine the diagnostic value of hub genes, correlation analysis was employed to explore the association between hub genes and infiltrating immune cells, and certain hub genes was validated by quantitative real-time PCR and immunohistochemistry staining in cultured tubule cells and diabetic mice kidney. Finally, the candidate small molecules as potential drugs to treat DKD were anticipated through utilizing virtual screening and molecular docking investigation. Results: Our study revealed significantly higher proportion of infiltrating immune cells within kidney from DKD patients via probing the immune landscape by single-cell transcriptomics. Besides, 126 commonly shared DEGs identified among three group samples were enriched in immune biological process. In addition, the ROC curve analysis demonstrated the strong diagnostic accuracy of recognized hub genes (NFKB1, DYRK2, ATAD2, YAP1, and CHD3) from PPI network. Correlation analysis further confirmed the positive association between these hub genes with infiltrating natural killer cells. More importantly, the mRNA transcripts and protein abundance of YAP1 were significantly higher in high glucose-treated renal tubule cells and diabetic mice kidney, and the small molecules exhibiting the best binding affinities with YAP1 were predicted and acquired. Conclusion: Our findings for the first time indicate that NFKB1, DYRK2, ATAD2, YAP1, and CHD3 might be potential novel biomarkers and therapeutic targets for DKD, providing insights into the molecular mechanisms underlying the pathogenesis of DKD.

20.
Adv Mater ; 34(29): e2202854, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35686844

RESUMO

The electrocatalytic CO2 RR to produce value-added chemicals and fuels has been recognized as a promising means to reduce the reliance on fossil resources; it is, however, hindered due to the lack of high-performance electrocatalysts. The effectiveness of sculpturing metal/metal oxides (MMO) heterostructures to enhance electrocatalytic performance toward CO2 RR has been well documented, nonetheless, the precise synergistic mechanism of MMO remains elusive. Herein, an in operando electrochemically synthesized Cr2 O3 -Ag heterostructure electrocatalyst (Cr2 O3 @Ag) is reported for efficient electrocatalytic reduction of CO2 to CO. The obtained Cr2 O3 @Ag can readily achieve a superb FECO of 99.6% at -0.8 V (vs RHE) with a high JCO of 19.0 mA cm-2 . These studies also confirm that the operando synthesized Cr2 O3 @Ag possesses high operational stability. Notably, operando Raman spectroscopy studies reveal that the markedly enhanced performance is attributable to the synergistic Cr2 O3 -Ag heterostructure induced stabilization of CO2 •- /*COOH intermediates. DFT calculations unveil that the metallic-Ag-catalyzed CO2 reduction to CO requires a 1.45 eV energy input to proceed, which is 0.93 eV higher than that of the MMO-structured Cr2 O3 @Ag. The exemplified approaches in this work would be adoptable for design and development of high-performance electrocatalysts for other important reactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA