Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Nucleic Acids Res ; 52(D1): D1597-D1613, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37831097

RESUMO

The scope and function of RNA modifications in model plant systems have been extensively studied, resulting in the identification of an increasing number of novel RNA modifications in recent years. Researchers have gradually revealed that RNA modifications, especially N6-methyladenosine (m6A), which is one of the most abundant and commonly studied RNA modifications in plants, have important roles in physiological and pathological processes. These modifications alter the structure of RNA, which affects its molecular complementarity and binding to specific proteins, thereby resulting in various of physiological effects. The increasing interest in plant RNA modifications has necessitated research into RNA modifications and associated datasets. However, there is a lack of a convenient and integrated database with comprehensive annotations and intuitive visualization of plant RNA modifications. Here, we developed the Plant RNA Modification Database (PRMD; http://bioinformatics.sc.cn/PRMD and http://rnainformatics.org.cn/PRMD) to facilitate RNA modification research. This database contains information regarding 20 plant species and provides an intuitive interface for displaying information. Moreover, PRMD offers multiple tools, including RMlevelDiff, RMplantVar, RNAmodNet and Blast (for functional analyses), and mRNAbrowse, RNAlollipop, JBrowse and Integrative Genomics Viewer (for displaying data). Furthermore, PRMD is freely available, making it useful for the rapid development and promotion of research on plant RNA modifications.


Assuntos
Bases de Dados de Ácidos Nucleicos , Plantas , RNA de Plantas , Gerenciamento de Dados , Genômica , Plantas/genética , RNA de Plantas/genética
2.
PLoS Genet ; 18(2): e1010017, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35108269

RESUMO

Slash pine (Pinus elliottii Engelm.) is an important timber and resin species in the United States, China, Brazil and other countries. Understanding the genetic basis of these traits will accelerate its breeding progress. We carried out a genome-wide association study (GWAS), transcriptome-wide association study (TWAS) and weighted gene co-expression network analysis (WGCNA) for growth, wood quality, and oleoresin traits using 240 unrelated individuals from a Chinese slash pine breeding population. We developed high quality 53,229 single nucleotide polymorphisms (SNPs). Our analysis reveals three main results: (1) the Chinese breeding population can be divided into three genetic groups with a mean inbreeding coefficient of 0.137; (2) 32 SNPs significantly were associated with growth and oleoresin traits, accounting for the phenotypic variance ranging from 12.3% to 21.8% and from 10.6% to 16.7%, respectively; and (3) six genes encoding PeTLP, PeAP2/ERF, PePUP9, PeSLP, PeHSP, and PeOCT1 proteins were identified and validated by quantitative real time polymerase chain reaction for their association with growth and oleoresin traits. These results could be useful for tree breeding and functional studies in advanced slash pine breeding program.


Assuntos
Pinus/crescimento & desenvolvimento , Pinus/genética , Extratos Vegetais/genética , Brasil , China , Expressão Gênica/genética , Regulação da Expressão Gênica de Plantas/genética , Estudo de Associação Genômica Ampla/métodos , Melhoramento Vegetal/métodos , Polimorfismo de Nucleotídeo Único/genética , Transcriptoma/genética , Madeira/genética , Madeira/crescimento & desenvolvimento
3.
Chemistry ; 30(9): e202303092, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38057492

RESUMO

While great achievements have been made in the development of mechanically robust nanocomposite hydrogels, incorporating multiple interactions on the bases of two demensional inorganic cross-linkers to construct self-strengthening hydrogels has rarely been investigated. To this end, we propose here a new method for the coupling the dynamic covalent bonds and non-covalent interactions within a pseudo double-network system. The pseudo first network, formed through the Schiff Base reation between Tris-modified layered double hydroxides (Tris-LDHs) and oxidized dextran (ODex), is linked to the second network built upon non-covalent interactions between Tris-LDHs and poly(acrylamide-co-2-acrylamido-2-methyl-propanesulfonate) (p-(AM-co-AMPS). The swelling and mechanical properties of the resulting hydrogels have been investigated as a function of the ODex and AMPS contents. The as-prepared hydrogel can swell to 420 times of its original size and retain more than 99.9 wt.% of water. Mechanical tests show that the hydrogel can bear 90 % of compression and is able to be stretched to near 30 times of its original length. Cyclic tensile tests reveal that the hydrogels are capable of self-strengthening after mechanical training. The unique energy dissipation mechanism based on the dynamic covalent and non-covalent interactions is considered to be responsible for the outstanding swelling and mechanical performances.

4.
BMC Oral Health ; 24(1): 695, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879477

RESUMO

BACKGROUND: The status of dental caries is closely related to changes in the oral microbiome. In this study, we compared the diversity and structure of the dental plaque microbiome in children with severe early childhood caries (S-ECC) before and after general anaesthesia and outpatient treatment. METHODS: Forty children aged 3 to 5 years with S-ECC who had completed whole-mouth dental treatment under general anaesthesia (C1) or in outpatient settings (C2) were selected, 20 in each group. The basic information and oral health status of the children were recorded, and the microbial community structure and diversity of dental plaque before treatment (C1, C2), the day after treatment(C2_0D), 7 days after treatment (C1_7D, C2_7D), 1 month after treatment (C1_1M, C2_1M), and 3 months after treatment (C1_3M, C2_3M) were analysed via 16 S rRNA high-throughput sequencing technology. RESULTS: (1) The alpha diversity test showed that the flora richness in the multiappointment group was significantly greater at posttreatment than at pretreatment (P < 0.05), and the remaining alpha diversity index did not significantly differ between the 2 groups (P > 0.05). The beta diversity analysis revealed that the flora structures of the C1_7D group and the C2_3M group were significantly different from those of the other time points within the respective groups (P < 0.05). (2) The core flora existed in both the pre- and posttreatment groups, and the proportion of their flora abundance could be altered depending on the caries status of the children in both groups. Leptotrichia abundance was significantly (P < 0.05) lower at 7 days posttreatment in both the single- and multiappointment groups. Corynebacterium and Corynebacterium_matruchotii were significantly more abundant in the C1_1M and C1_3M groups than in the C1 and C1_7D groups (P < 0.05). Streptococcus, Haemophilus and Haemophilus_parainfluenzae were significantly more abundant in the C1_7D group than in the other groups (P < 0.05). CONCLUSION: A single session of treatment under general anaesthesia can cause dramatic changes in the microbial community structure and composition within 7 days after treatment, whereas treatment over multiple appointments may cause slow changes in oral flora diversity.


Assuntos
Cárie Dentária , Placa Dentária , Humanos , Placa Dentária/microbiologia , Cárie Dentária/microbiologia , Cárie Dentária/terapia , Pré-Escolar , Masculino , Feminino , Microbiota , Anestesia Geral , RNA Ribossômico 16S
5.
Connect Tissue Res ; 62(3): 325-336, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32151168

RESUMO

Purpose: Adipose-derived stem cells (ADSCs) are ideal for cell-based therapies to support bone regeneration. It is vital to understand the critical genes and molecular mechanisms involved in the functional regulation of ADSCs for enhancing bone regeneration. In the present study, we investigated the Gremlin 1 (GREM1) effect on ADSCs osteogenic differentiation and senescence.Materials and methods: The in vitro ADSCs osteogenic differentiation potential was evaluated by determining alkaline phosphatase (ALP) activity, mineralization ability, and the expression of osteogenic markers. Cell senescence is determined by SA-ß-gal staining, telomerase assay, and the expression of aging markers.Results: GREM1 overexpression in ADSCs reduced ALP activity and mineralization, inhibited the expression of osteogenic related genes OCN, OPN, DSPP, DMP1, and BSP, and key transcription factors, RUNX2 and OSX. GREM1 knockdown in ADSCs enhanced ALP activity and mineralization, promoted the expression of OCN, OPN, DSPP, DMP1, BSP, RUNX2, and OSX. GREM1 overexpression in ADSCs reduced the percent SA-ß-Gal positive cells, P16 and P53 expressions, and increased telomerase activity. GREM1 knockdown in ADSCs increased the percentage of SA-ß-Gal positive cells, P16 and P53 expressions, and reduced telomerase activity. Furthermore, GREM1 reduced the mRNA expression levels of BMP2, BMP6, and BMP7.Conclusions: In summary, our findings suggested that GREM1 inhibited ADSCs senescence and osteogenic differentiation and antagonized BMP transcription.


Assuntos
Osteogênese , Telomerase , Diferenciação Celular , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Osteogênese/genética , Células-Tronco , Telomerase/genética , Proteína Supressora de Tumor p53
6.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 52(3): 409-415, 2021 May.
Artigo em Chinês | MEDLINE | ID: mdl-34018358

RESUMO

OBJECTIVE: To study the effect of bone morphogenetic protein (BMP) antagonist Gremlin 1 (GREM1) on the function of stem cells from apical papilla (SCAPs) and explore its mechanism. METHODS: After isolation and culturing of stem cells from apical papilla in vitro, immunofluorescent staining was done to examine the subcellular localization of GREM1 in SCAPs. Transfection with lentiviral GREM1 shRNA was done to knock-down the GREM1. The SCAPs were subjected to osteogenic induction in both the GREM1 knockdown group and the control group, and the knockdown effect of GREM1 was examined using real time-PCR and Western blot. Two groups of cells were collected and the alkaline phosphatase (ALP) activity was measured 7 d after osteogenic induction. Alizarin red staining was done 3 weeks after osteogenic/odontogenic induction and real time-PCR was done after 0, 1, 2, 3 weeks of osteogenic induction to examine the expression of osteogenic/odontogenic marker genes, including osteocalcin ( OCN), osteopontin ( OPN), bone sialoprotein ( BSP), dentin matrix protein 1 ( DMP1), dentin sialophosphoprotein ( DSPP) and and the critical transcription factor osterix ( OSX), Runt-related transcription factor 2 ( RUNX2), and distal-less homebox 2 ( DLX2). Two groups of cells were collected, and CCK-8 and CFSE assay were used to evaluate changes in cell proliferation. In addition, real time-PCR was used to examine the expression of senescence-related genes p53 and wide-type activated factor 1 ( Waf1), a regulatory factor of the cell cycle, stemness associated gene krupple-like factor 4 ( KLF4), and SRY related HMG box-2 ( SOX2), and the expression of bone morphogenetic protein ( BMP) 2, 4, 5, 6, 7, 9 after GREM1 knockdown. RESULTS: Immunofluorescence staining showed that the expression of GREM1 in the nucleus was higher than that in the cytoplasm. Real time-PCR and Western blot affirmed that GREM1 was knocked down steadily. The ALP activity of the GREM1 knockdown group was higher than that of the control group ( P<0.05), and the alizarin red staining was lighter than that of the control group. The expression of OCN and DMP1 increased in the first, second and third week, OPN was increased in the second week, BSP increased in the third week, DSPP increased in the first week, and the difference was statistically significant ( P<0.05). The key osteogenic transcription factors RUNX2, OSX, and DLX2 all increased at different stages, and the difference was statistically significant ( P<0.05). CCK-8 and CFSE assay showed that the proliferation ability of the GREM1 knockdown group decreased ( P<0.05). In the GREM1 knockdown group, the expression of BMP2, 6, and 7 increased, the expression of SOX2 and KLF4 increased, while the expression of p53 and Waf1 decreased ( P<0.05). CONCLUSIONS: The knockdown of GREM1 enhanced the osteogenic/odontogenic differentiation and stemness of SCAPs and inhibited the proliferation and senescence of SCAPs. Effects of GREM1 on the function of SCAPs maybe achieved through regulating the gene expression of BMP2, BMP6, and BMP7 at the mRNA level.


Assuntos
Odontogênese , Osteogênese , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Células-Tronco
7.
J Oral Rehabil ; 47 Suppl 1: 55-65, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31291686

RESUMO

OBJECTIVES: In dental tissue engineering, niche is important for maintaining stem cell function and regenerating the dental tissues. However, there is limited knowledge for the growth factors in niche to maintain the function of stem cells. In this study, we investigated the effect of IGF2, a growth factor in stem cells from apical papilla (SCAPs) niche, on differentiation and proliferation potentials of SCAPs. MATERIALS AND METHODS: Recombinant human IGF2 protein (rhIGF2) was used. Cell counting kit-8 assay, Carboxyfluorescein succinimidyl ester assay, alkaline phosphatase (ALP) activity, Alizarin Red staining, quantitative calcium analysis, immunofluorescence staining and real-time RT-PCR were performed to investigate the cell proliferation and differentiation potentials of SCAPs. And proteomic analysis was used to identify the differential secreted proteins. RESULTS: By ALP activity assay, we found that 5 ng/mL rhIGF2 might be the optimal concentration for treatment. Then, Alizarin Red staining, quantitative calcium analysis and osteogenesis-related gene expression results showed that 5 ng/mL rhIGF2 could enhance the osteo-/dentinogenic differentiation potentials in SCAPs. Immunofluorescence staining and real-time RT-PCR results showed that neurogenic markers were significantly induced by 5 ng/mL rhIGF2 in SCAPs. Then, CCK-8 assay and CFSE assay results showed that 5 ng/mL rhIGF2 could enhance the cell proliferation in SCAPs. Furthermore, proteomic analysis showed that IGF2 could induce some secreted proteins which function related to the osteogenesis, neurogenesis and cell proliferation. CONCLUSIONS: Our results identified that IGF2 might be the potential mediator in niche to promote SCAP function and dental tissue regeneration.


Assuntos
Papila Dentária , Proteômica , Diferenciação Celular , Células Cultivadas , Humanos , Fator de Crescimento Insulin-Like II , Neurogênese , Células-Tronco
8.
Dev Growth Differ ; 61(9): 457-465, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31599466

RESUMO

Dental stem cells for dental pulp regeneration have become a new strategy for pulpitis treatment. Angiogenesis and neurogenesis play a vital role in the pulp-dentin complex regeneration, and appropriate growth factors will promote the process of angiogenesis and neurogenesis. Insulin-like growth factor-binding protein 5 (IGFBP5) is involved in the regulation of tooth growth and development. A previous study showed that IGFBP5 enhanced osteo/odontogenic differentiation of dental stem cells. Our research intends to reveal the function of IGFBP5 in the angiogenic and neurogenic differentiation of human dental stem cells. Human dental pulp stem cells (DPSCs) were used in the present study. Lentiviral IGFBP5 shRNA was used to silence the IGFBP5. Retroviruses expressing Wild-type IGFBP5 were used to over-express IGFBP5. Angiogenic and neurogenic differentiation were carried out by in vitro study. Real-time RT-PCR and western blot results showed that over-expression of IGFBP5 upregulated the expressions of angiogenic markers, including VEGF, PDGFA and ANG-1, and neurogenic markers, including NCAM, TH, Nestin, ßIII-tubulin, and TH, in DPSCs. Moreover, microscope observation confirmed that over-expression of IGFBP5 enhanced neurosphere formation in DPSCs in size and amount. Immunofluorescence staining results showed that over-expression of IGFBP5 also prompted the percentage of Nestin and ßIII-tubulin positive neurospheres in DPSCs. While depletion of IGFBP5 downregulated the expressions of VEGF, PDGFA, ANG-1, NCAM, TH, Nestin, ßIII-tubulin, and TH, it decreased the neurosphere formation and percentage of Nestin and ßIII-tubulin positive neurospheres in DPSCs. In conclusion, our results revealed that IGFBP5 promoted angiogenic and neurogenic differentiation potential of DPSCs in vitro and provided the possible potential target for enhancing directed differentiation of dental stem cells and dental pulp-dentin functional regeneration.


Assuntos
Polpa Dentária/metabolismo , Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Neovascularização Fisiológica , Células-Tronco/metabolismo , Diferenciação Celular , Células Cultivadas , Polpa Dentária/citologia , Humanos , Células-Tronco/citologia
9.
J Oral Maxillofac Surg ; 77(5): 1009-1021, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30689967

RESUMO

PURPOSE: Increasing evidence suggests that aberrant expression of miR-495 is associated with the progression of various cancers. The aim of this study was to investigate the function and underlying mechanism of miR-495 in oral squamous cell carcinoma (OSCC). MATERIALS AND METHODS: OSCC specimens and oral cancer cell lines, as well as the OSCC microRNA expression profile from the Gene Expression Omnibus database, were used to detect the expression of miR-495 in OSCC. Cell proliferation, migration, and invasion assays were performed to analyze the function of miR-495. Bioinformatics and luciferase reporter assays were used to identify the target gene of miR-495. Pearson analysis was carried out to investigate the correlation between miR-495 and insulin-like growth factor 1 (IGF1) or AKT levels. Transfection of pcDNA3.1 vector and small interfering RNA was performed to overexpress or downregulate the expression of IGF1. OSCC xenografts in mice were constructed to validate the function and mechanism of miR-495 in vivo. RESULTS: MiR-495 was downregulated in OSCC tissues and cell lines, and it markedly inhibited cell proliferation, migration, and invasion, as well as epithelial-to-mesenchymal transition (EMT)-related proteins of OSCC cells. IGF1 was identified as a direct target gene of miR-495. Besides, AKT was confirmed to be regulated by miR-495/IGF-1 signaling, and miR-495 was negatively correlated with IGF1 and AKT in OSCC. In vivo, miR-495 inhibited the growth and EMT-related proteins of OSCC xenografts in mice. CONCLUSIONS: The miR-495/IGF-1/AKT signaling axis played a tumor-suppressive role in OSCC by regulating cell proliferation, invasion, and migration, as well as EMT.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Bucais , Animais , Linhagem Celular Tumoral , Humanos , Fator de Crescimento Insulin-Like I , Camundongos , MicroRNAs , Proteínas Proto-Oncogênicas c-akt
10.
Connect Tissue Res ; 59(3): 201-211, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28605223

RESUMO

PURPOSE: Mesenchymal stem cells (MSCs) are a reliable cell source for tissue regeneration. However, the molecular mechanisms underlying the directed differentiation of MSCs remain unclear which impedes potential clinical applications. Recent studies have discovered that Homeobox (HOX) genes are involved in the differentiation regulation of MSCs and bone formation. In this study, we investigate the HOXC10 function in the osteogenic differentiation potential of MSCs. MATERIALS AND METHODS: Stem cells from apical papilla (SCAPs) and adipose-derived stem cells (ADSCs) were used in this study. Alkaline phosphatase (ALP) activity assays, ALP staining, Alizarin red staining, quantitative calcium analysis, osteogenesis-associated gene expression, and in vivo transplantation experiments were used to study osteogenic differentiation potential. RESULTS: Our results showed that overexpression of HOXC10 in SCAPs inhibited ALP activity and mineralization in vitro and decreased the mRNA expression of collagen alpha-1 (I) chain, bone sialoprotein, osteocalcin, and a key transcription factor, runt-related transcription factor 2, in SCAPs. Depletion of HOXC10 promoted osteogenic differentiation in SCAPs in vitro. In addition, in vivo transplantation experiments in nude mice confirmed that SCAPs osteogenesis was triggered when HOXC10 was downregulated. Furthermore, depletion of HOXC10 also enhanced osteogenic differentiation in ADSCs. CONCLUSIONS: Taken together, these results indicated that HOXC10 decreased the MSC osteogenic differentiation potential. Thus, inhibition of HOXC10 in MSCs might have the potential to improve tissue regeneration and provide insight into the mechanism underlying the directed differentiation of MSCs.


Assuntos
Diferenciação Celular/fisiologia , Proteínas de Homeodomínio/metabolismo , Células-Tronco Mesenquimais/citologia , Osteogênese/fisiologia , Animais , Diferenciação Celular/genética , Proliferação de Células/fisiologia , Células Cultivadas , Regulação da Expressão Gênica , Genes Homeobox/genética , Humanos , Camundongos Nus , Células-Tronco/citologia , Fatores de Transcrição/metabolismo
11.
Cells Tissues Organs ; 203(1): 1-11, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27627434

RESUMO

INTRODUCTION: Dental pulp stem cell (DPSC)-mediated dental pulp regeneration is considered a promising method for the treatment of deep caries with pulpitis. However, mesenchymal stem cell (MSC) senescence is an adverse factor from the perspective of cell-based therapies. In this study, we investigated the characteristics and expression profiles of DPSCs from young and old donors. METHODS: DPSCs from young and old donors were cultured in differentiation medium, and their differentiation potentials were assessed. Long noncoding RNA (LncRNA) microarray assays and a bioinformatic analysis were performed to investigate differences in LncRNA and mRNA expression profiles between DPSCs from young and old donors. RESULTS: We found that DPSCs from young donors exhibited more powerful proliferation ability and greater osteogenic and adipogenic differentiation potentials than DPSCs from old donors. In DPSCs from young donors, numerous LncRNAs were significantly up- (n = 389) or down-regulated (n = 172) compared to DPSCs from old donors. Furthermore, 304 mRNAs were differentially expressed, including 247 up-regulated genes and 57 down-regulated genes in DPSCs from young donors. The bioinformatic analysis identified that several pathways may be associated with DPSC characteristics, such as those involved in the cell cycle and RNA transport, and revealed nuclear transcription factor Y subunit ß, general transcription factor IIB, and nuclear receptor subfamily 3 group C member 1 as core regulatory factors and FR249114, FR299091, and ENST00000450004 as core LncRNAs. CONCLUSIONS: Our results indicated that senescence impaired the proliferation and differentiation potentials of DPSCs and that donor age is an important factor that affects their use for tooth regeneration. We also provide insight into the mechanisms responsible for senescence in DPSCs.


Assuntos
Diferenciação Celular/genética , Senescência Celular/genética , Polpa Dentária/citologia , Perfilação da Expressão Gênica , Células-Tronco/citologia , Células-Tronco/metabolismo , Adipogenia , Adolescente , Adulto , Idoso , Proliferação de Células , Separação Celular , Criança , Biologia Computacional , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Osteogênese , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Doadores de Tecidos , Adulto Jovem
12.
Cell Biol Int ; 41(5): 534-543, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28244619

RESUMO

Dental tissue-derived mesenchymal stem cells (MSCs) are easily obtained and considered as a favorable cell source for tissue engineering, but the regulation of direct differentiation is unknown, which restricts their application. The present study investigated the effect of SFRP2, a Wnt signaling modulator, on MSC differentiation using stem cells from apical papilla (SCAPs). The cells were cultured in specific inducing medium for adipogenic, neurogenic, or chondrogenic differentiation. Over-expression of SFRP2 via retroviral infection enhanced the adipogenic and neurogenic differentiation of SCAPs. While inhibit of Wnt pathway by IWR1-endo could enhance the neurogenic differentiation potentials of SCAPs, similar with the function of SFRP2. In addition, over-expression of SFRP2 up-regulated the expression of stemness-related genes SOX2 and OCT4. Furthermore, SOX2 and OCT4 expression was significantly inhibited after lentiviral silencing of SFRP2 in SCAPs. Therefore, our results suggest that SFRP2 enhances the adipogenic and neurogenic differentiation potentials of SCAPs by up-regulating SOX2 and OCT4. Moreover, the effect of SFRP2 in neurogenic differentiation of SCAPs maybe also associated with Wnt inhibition. Our results provided useful information about the molecular mechanism underlying directed differentiation in dental tissue-derived MSCs.


Assuntos
Adipogenia/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Papila Dentária/citologia , Proteínas de Membrana/farmacologia , Neurônios/citologia , Células-Tronco/citologia , Adipogenia/genética , Adolescente , Diferenciação Celular/genética , Condrogênese/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Neurônios/efeitos dos fármacos , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Células-Tronco/efeitos dos fármacos , Adulto Jovem
13.
Cell Mol Biol Lett ; 22: 14, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28794794

RESUMO

BACKGROUND: Exploring the molecular mechanisms underlying directed differentiation is helpful in the development of clinical applications of mesenchymal stem cells (MSCs). Our previous study on dental tissue-derived MSCs demonstrated that secreted frizzled-related protein 2 (SFRP2), a Wnt inhibitor, could enhance osteogenic differentiation in stem cells from the apical papilla (SCAPs). However, how SFRP2 promotes osteogenic differentiation of dental tissue-derived MSCs remains unclear. In this study, we used SCAPs to investigate the underlying mechanisms. METHODS: SCAPs were isolated from the apical papilla of immature third molars. Western blot and real-time RT-PCR were applied to detect the expression of ß-catenin and Wnt target genes. Alizarin Red staining, quantitative calcium analysis, transwell cultures and in vivo transplantation experiments were used to study the osteogenic differentiation potential of SCAPs. RESULTS: SFRP2 inhibited canonical Wnt signaling by enhancing phosphorylation and decreasing the expression of nuclear ß-catenin in vitro and in vivo. In addition, the target genes of the Wnt signaling pathway, AXIN2 (axin-related protein 2) and MMP7 (matrix metalloproteinase-7), were downregulated by SFRP2. WNT1 inhibited the osteogenic differentiation potential of SCAPs. SFRP2 could rescue this WNT1-impaired osteogenic differentiation potential. CONCLUSIONS: The results suggest that SFRP2 could bind to locally present Wnt ligands and alter the balance of intracellular Wnt signaling to antagonize the canonical Wnt pathway in SCAPs. This elucidates the molecular mechanism underlying the SFRP2-mediated directed differentiation of SCAPs and indicates potential target genes for improving dental tissue regeneration.


Assuntos
Proteínas de Membrana/fisiologia , Osteogênese , Células-Tronco/fisiologia , Via de Sinalização Wnt , Papila Dentária/citologia , Regulação para Baixo , Humanos , Proteínas de Membrana/metabolismo , Células-Tronco/metabolismo
14.
BMC Genet ; 17(1): 104, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27388017

RESUMO

BACKGROUND: Japanese larch (Larix kaempferi) as a successful exotic species has become one of the most important economic and ecological conifers in China. In order to broaden the genetic resource of Larix kaempferi, an effort was made in 1996 to introduce 128 families from seven seed orchards in Japan, with which to establish two progeny trials in climatically different environments. The experiment was aimed to determine the strategy of early selection, particularly important for long-rotated Japanese larch, and the optimal breeding program for specific environments. RESULT: Growth trajectories revealed different growth performances of stem height (HGT) and diameter at breast height (DBH) in two different environments, Hubei and Liaoning. In both sites, there were marked variabilities in HGT, DBH and volume (VOL) among families at each year. The trends of individual and family heritability and age-age correlations were found to follow a certain dynamic pattern. Based on these trends, the optimum selection age was determined at four years for HGT and five years for DBH in Hubei and Liaoning. Genetic gains for VOL were 34.4 and 6.04 % in Hubei and Liaoning respectively when selection ratio was 10 % at age 16. Type-B correlations were less than 0.67 and rank correlations of breeding value were less than 0.4 for HGT, DBH and VOL between the two sites, revealing that there exist pronounced family-by-site interactions for the growth traits of Larix kaempferi. CONCLUSIONS: Early selection for Larix kaempferi is an effective strategy to overcome its long rotation age. In early selection, dual growth trait selection is more effective than single one. Regionalization deployment should be considered in Larix. kaempferi breeding program based on different environmental factors.


Assuntos
Cruzamento/métodos , Larix/genética , Polinização , Larix/fisiologia , Fatores de Tempo
15.
Med Sci Monit ; 22: 1497-507, 2016 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-27141955

RESUMO

BACKGROUND To examine changes of mRNA and protein expressions of MMP-2, Bcl-2, and BAX in atrial fibrillation (AF) patients, and investigate the correlations among these 3 biomarkers. MATERIAL AND METHODS Rheumatic heart disease patients (n=158) undergoing cardiac surgical procedures for mitral valve repair or replacement were included as the AF group (n=123), containing paroxysmal AF (n=42), persistent AF (n=36), and permanent AF (n=45). Rheumatic heart disease patients with sinus rhythm (SR) (n=35) were enrolled as the SR group (control group). Immunohistochemistry, Western blot, and real-time polymerase chain reaction (PCR) were applied to detect the protein and mRNA expression levels of MMP-2, Bcl-2, and BAX. Apoptosis was observed with light and electron microscopes and detected by TdT-mediated dUTP nick-end labeling (TUNEL). RESULTS Compared with the SR group, the left atrial diameters (LADs), protein and mRNA expression levels of MMP-2 and BAX, apoptotic index (AI), and Bcl-2/BAX ratio were evidently increased in the 3 AF groups, but protein and mRNA expression levels of Bcl-2 decreased in the AF groups (all P<0.05). Correlation analysis found that MMP-2 protein expression levels was positively correlated with BAX expression, but negatively correlated with Bcl-2 expression levels. CONCLUSIONS Our study results suggest that elevated MMP-2 expression and disturbance balance of Bcl-2/BAX expressions may be associated with the development and maintenance of AF. MMP-2 may be involved in the development of AF through promoting BAX expressions and inhibiting Bcl-2.


Assuntos
Fibrilação Atrial/enzimologia , Fibrilação Atrial/genética , Metaloproteinase 2 da Matriz/genética , Proteína X Associada a bcl-2/genética , Idoso , Apoptose , Arritmia Sinusal/enzimologia , Arritmia Sinusal/genética , Arritmia Sinusal/patologia , Fibrilação Atrial/patologia , Feminino , Regulação da Expressão Gênica , Humanos , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Miócitos Cardíacos/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína X Associada a bcl-2/metabolismo
16.
Front Plant Sci ; 15: 1346192, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38766470

RESUMO

Currently the determination of cyanidin 3-rutinoside content in plant petals usually requires chemical assays or high performance liquid chromatography (HPLC), which are time-consuming and laborious. In this study, we aimed to develop a low-cost, high-throughput method to predict cyanidin 3-rutinoside content, and developed a cyanidin 3-rutinoside prediction model using near-infrared (NIR) spectroscopy combined with partial least squares regression (PLSR). We collected spectral data from Michelia crassipes (Magnoliaceae) tepals and used five different preprocessing methods and four variable selection algorithms to calibrate the PLSR model to determine the best prediction model. The results showed that (1) the PLSR model built by combining the blockScale (BS) preprocessing method and the Significance multivariate correlation (sMC) algorithm performed the best; (2) The model has a reliable prediction ability, with a coefficient of determination (R2) of 0.72, a root mean square error (RMSE) of 1.04%, and a residual prediction deviation (RPD) of 2.06. The model can be effectively used to predict the cyanidin 3-rutinoside content of the perianth slices of M. crassipes, providing an efficient method for the rapid determination of cyanidin 3-rutinoside content.

17.
Chin J Dent Res ; 27(3): 203-213, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39221981

RESUMO

OBJECTIVE: To investigate the biological regulatory function of Gremlin1 (GREM1) and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein eta (YWHAH) in dental pulp stem cells (DPSCs), and determine the underlying molecular mechanism involved. METHODS: Alkaline phosphatase (ALP) activity, alizarin red staining, scratch migration assays and in vitro and in vivo osteo-/dentinogenic marker detection of bone-like tissue generation in nude mice were used to assess osteo-/dentinogenic differentiation. Coimmunoprecipitation and polypeptide microarray assays were employed to detect the molecular mechanisms involved. RESULTS: The data revealed that knockdown of GREM1 promoted ALP activity, mineralisation in vitro and the expression of osteo-/dentinogenic differentiation markers and enhanced osteo-/ dentinogenesis of DPSCs in vivo. GREM1 bound to YWHAH in DPSCs, and the binding site was also identified. Knockdown of YWHAH suppressed the osteo-/dentinogenesis of DPSCs in vitro, and overexpression of YWHAH promoted the osteo-/dentinogenesis of DPSCs in vitro and in vivo. CONCLUSION: Taken together, the findings highlight the critical roles of GREM1-YWHAH in the osteo-/dentinogenesis of DPSCs.


Assuntos
Diferenciação Celular , Polpa Dentária , Peptídeos e Proteínas de Sinalização Intercelular , Osteogênese , Células-Tronco , Animais , Humanos , Camundongos , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/genética , Células Cultivadas , Polpa Dentária/citologia , Polpa Dentária/metabolismo , Dentinogênese/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos Nus , Osteogênese/genética , Células-Tronco/metabolismo
18.
Front Plant Sci ; 14: 1079952, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36818862

RESUMO

Pine resin, as a natural material, has been widely used in food, pharmaceutical, and chemical industries. Slash pine (Pinus elliottii Engelm var. elliottii) is the primary tree species for resin tapping due to its high resin yield, low resin crystallization rate, and high turpentine content. Current researches focuse on the targeted improvement of several significant components to meet industrial needs rather than just resin yield. The objective of this study was to examine the genetic variation and correlation of genetic and phenotype for four main resin components (α pinene, ß pinene, abietic acid, and levoprimaric acid) of 219 half-sib progenies from 59 families. The results showed that the levopimaric acid had the largest content (mean value = 21.63%), while the ß pinene content had the largest variation coefficient (CV = 0.42). The α pinene content has the highest heritability (h2 = 0.67), while levopimaric acid has the lowest heritability (h2 = 0.51). There was a significant negative correlation between α pinene and the other three components and a significant positive correlation between ß pinene and the two diterpenes. The family ranking and genetic gain suggested that it is possible to improve the contents of main resin components of slash pine through genetic breeding selection.

19.
Arch Virol ; 157(2): 285-90, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22080196

RESUMO

Adefovir is usually applied for therapy of chronic hepatitis B (CHB), but its effectiveness after cessation is still unknown. This study was to evaluate the effectiveness of adefovir treatment with strict cessation criteria in hepatitis B e antigen (HBeAg)-negative patients and to identify potentially important factors. One hundred forty-five HBeAg-negative CHB patients who had received adefovir treatment for at least 24 months and for whom serum hepatitis B virus (HBV) DNA had remained undetectable for at least 18 months before cessation were included. They were followed up monthly during the first four months and at 3-month or 6-month intervals thereafter. Patients with ≥10(4) copies of HBV DNA per mL were defined as relapsed. In total, 95 patients relapsed within the follow-up time, and more than 93% relapsed within 12 months after adefovir cessation. Cumulative relapse rates at months 6, 12, 24, 36, 48 and 60 were 53.8%, 61.4%, 65.5%, 65.5%, 65.5% and 65.5%, respectively. Age was the only factor associated with relapse, with lower relapse rates in younger patients shown by Cox regression analysis. HBsAg seroconversion occurred in 12 patients, and none of them relapsed during follow-up. The effectiveness of adefovir therapy does not persist in HBeAg-negative CHB patients, even when strict cessation criteria are applied, except for patients aged ≤ 25 years. HBsAg seroconversion is the ideal endpoint of adefovir treatment.


Assuntos
Adenina/análogos & derivados , Antivirais/uso terapêutico , Antígenos E da Hepatite B/sangue , Vírus da Hepatite B/isolamento & purificação , Hepatite B Crônica/tratamento farmacológico , Organofosfonatos/uso terapêutico , Suspensão de Tratamento/estatística & dados numéricos , Adenina/uso terapêutico , Adulto , Feminino , Seguimentos , Antígenos de Superfície da Hepatite B/imunologia , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/imunologia , Hepatite B Crônica/sangue , Hepatite B Crônica/virologia , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Recidiva , Resultado do Tratamento , Adulto Jovem
20.
Plants (Basel) ; 11(7)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35406894

RESUMO

Pine resin is one of the best known and most exploited non-wood products. Resin is a complex mixture of terpenes produced by specialized cells that are dedicated to tree defense. Chemical defenses are plastic properties, and concentrations of chemical defenses can be adjusted based on environmental factors, such as resource availability. The slope orientation (south/sunny or north/shady) and the altitude of the plantation site have significant effects on the soil nutrient and the plant performance, whereas little is known about how the slope affects the pine resin yield and its components. In total, 1180 slash pines in 18 plots at different slope positions were established to determine the effects on the α- and ß-pinene content and resin production of the slash pine. The near-infrared spectroscopy (NIR) technique was developed to rapidly and economically predict the turpentine content for each sample. The results showed that the best partial least squares regression (PLS) models for α- and ß-pinene content prediction were established via the combined treatment of multiplicative scatter correction-significant multivariate correlation (MSC-sMC). The prediction models based on sMC spectra for α- and ß-pinene content have an R2 of 0.82 and 0.85 and an RMSE of 0.96 and 0.82, respectively, and they were successfully implemented in turpentine prediction in this research. The results also showed that a barren slope position (especially mid-slope) could improve the α-pinene and ß-pinene content and resin productivity of slash pine, and the ß-pinene content in the resin had more variances in this research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA