Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Environ Res ; 190: 110016, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32768473

RESUMO

This systematic literature review aimed at presenting experiences on the use of constructed wetlands (CW) as an alternative for the treatment of domestic wastewater in rural areas worldwide. CW units are often preceded by a pre-treatment step, although systems comprising arrangements of CW with different flow types are also applied. The literature review showed that the most commonly treatment system used in rural areas comprised septic tanks followed by CW. Overall, CW rural sanitation systems have shown to consistently remove pollutants, with median removal efficiencies equal to 87% for TSS, 89% for COD, 93% for BOD, 70% for Ntotal and 72% for Ptotal. Removal rates of indicator bacteria of up to 4.0 log10 have also been reported. Recent studies have shown CW to be efficient at removing hormones, pharmaceutical compounds and toxicity of wastewater. Consequently, final effluents are often in compliance with effluent discharge and wastewater reuse regulations. The adoption of pre-treatment reduces CW area requirements and clogging issues, and planted CW present benefits in terms of the removal of pollutants including pathogens. Low implementation and operational costs, simplified operation and maintenance, and high-quality final effluents favour CW. Guidelines provided by the local, competent authorities may support the rural application of CW. Finally, CW systems comprise a promising, sustainable solution for rural sanitation which may support access to adequate and equitable sanitation to several people as well as safe wastewater recycling and reuse, as encouraged by UN Sustainable Development Goal 6, Targets 3 and 4.


Assuntos
Eliminação de Resíduos Líquidos , Áreas Alagadas , Bactérias , Humanos , Saneamento , Águas Residuárias
2.
Water Sci Technol ; 71(9): 1382-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25945856

RESUMO

This study proposes that calculating and interpreting removal coefficients (K20) for bacteriophages in activated sludge (AS) and trickling filter (TF) systems using stochastic modelling may provide important information that may be used to estimate the removal of phages in such systems using simplified models. In order to achieve this, 14 samples of settled wastewater and post-secondary sedimentation wastewater were collected every 2 weeks, over a 6-month period (May to November), from two AS and two TF systems situated in southern England. Initial results have demonstrated that the removal of somatic coliphages in both AS and TF systems is considerably higher than that of F-RNA coliphages, and that AS more effectively removes both phage groups than TF. The results have also demonstrated that K20 values for phages in AS are higher than in TF, which could be justified by the higher removal rates observed in AS and the models assumed for both systems. The research provides a suggested framework for calculating and predicting removal rates of pathogens and indicator organisms in wastewater treatment systems using simplified models in order to support integrated water and sanitation safety planning approaches to human health risk management.


Assuntos
Colífagos/isolamento & purificação , Modelos Teóricos , Águas Residuárias/virologia , Purificação da Água , Bacteriófagos , Inglaterra , Filtração , Humanos , Esgotos
3.
Water Res ; 230: 119579, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36640612

RESUMO

The use of traditional faecal indicator bacteria as surrogate organisms for pathogenic viruses in domestic wastewater has been noted as a problematic as concentrations and removal rates of bacteria and viruses do not seem to correlate. In this sense, bacteriophages (phages) emerge as potential viral indicators, as they are commonly found in wastewater in high levels, and can be quantified using simple, fast, low-cost methods. Somatic and F-specific coliphages comprise groups of phages commonly used as indicators of water quality. There are two internationally recognised methods to detect and enumerate coliphages in water samples, the International Standardization Organization (ISO) and the US Environmental Protection Agency (USEPA) methods. Both methods are based on the lysis of specific bacterial host strains infected by phages. Within this context, this systematic literature review aimed at gathering concentrations in raw and treated domestic wastewater (secondary, biological treatment systems and post-treatment systems), and removal efficiencies of somatic and F-specific coliphages obtained by ISO and USEPA methods, and then compare both methods. A total of 33 research papers were considered in this study. Results showed that the ISO method is more commonly applied than the USEPA method. Some discrepancies in terms of concentrations and removal efficiencies were observed between both methods. Higher removal rates were observed for both somatic and F-specific coliphages in activated sludge systems when using the USEPA method compared to the ISO method; in other secondary (biological) treatment systems, this was observed only for F-specific coliphages. The use of different standardised methods available might lead to difficulties in obtaining and comparing phage data in different conditions and locations. Future research comparing both ISO and USEPA methods as well as viral and bacterial pathogens and indicators in WWTP is recommended.


Assuntos
Bacteriófagos , Águas Residuárias , Estados Unidos , United States Environmental Protection Agency , Colífagos , Esgotos/microbiologia , Bactérias , Padrões de Referência , Microbiologia da Água
4.
Sci Total Environ ; 745: 140711, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32763641

RESUMO

The reuse or recycling of wastewater provides environmental and economic benefits, representing a sustainable and circular alternative for the management of liquid waste. However, the application of effluents to agricultural crops via spraying creates a potentially dangerous situation for individuals exposed to airborne pathogens. This study used Quantitative Microbial Risk Assessment (QMRA) tools to quantitatively assess the microbial risks of occupational and public exposures to bioaerosols in fertigation scenarios by spraying untreated and treated dairy cattle wastewater. Analyses of Escherichia coli (EC) and spores of Clostridium perfringens (CpSP) in raw and treated effluents as well as pathogen / indicator ratios from the literature were used to estimate the concentrations of Escherichia coli O157:H7 (EC O157:H7) and Cryptospodirium spp. (Crypto) in the air, and the results were applied to an atmospheric microbiological dispersion model. From the concentrations of pathogens in the air, infectious risks for downwind receptors were calculated. The risks of infection by EC O157:H7 to workers at 10 m and 50 m away from the emission source ranged between 3.81 × 10 1 and 2.68 × 10 3 pppy (per person per year), whereas to residents at 100 m and 500 m ranged from 4.59 × 10 1 to 1.51 × 10 4 pppy. Peak values (95th percentile) of occupational and public risks associated with the exposure to Crypto were 3.41 × 10 3 and 6.84 × 10 4 pppy at 10 m and 50 m from the source, respectively, and were lower than 1.48 × 10 6 pppy regarding exposures to CpSP. Anaerobic digestion reduced risks by approximately one order of magnitude. The distance from the source was inversely proportional to the risk of exposure. It is recommended that wastewater is treated prior to its reuse and the adoption of application methods with low aerosolization potential. In addition, the need for workers to use personal protective equipment (PPE) is highlighted.


Assuntos
Escherichia coli O157 , Águas Residuárias , Animais , Bovinos , Produtos Agrícolas , Humanos , Reciclagem , Medição de Risco
5.
Water Res ; 129: 172-179, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29149672

RESUMO

Many wastewater treatment technologies have been shown to remove bacterial pathogens more effectively than viral pathogens and, in aquatic environments, levels of traditional faecal indicator bacteria (FIB) do not appear to correlate consistently with levels of human viral pathogens. There is, therefore, a need for novel viral indicators of faecal pollution and surrogates of viral pathogens, especially given the increasing importance of indirect and direct wastewater reuse. Potential candidates include bacteriophages (phages) and the study described here sought to elucidate the relationship between three groups of phages (somatic coliphages (SOMPH), F-RNA coliphages (F-RNAPH) and human-specific phages infecting B. fragilis (Bf124PH) - enumeration using double layer agar technique) and viral pathogens (human adenovirus (HuAdV) and norovirus (NoV) - enumeration using molecular methods) through full-scale municipal wastewater treatment processes. FIB (faecal coliforms (FC) and intestinal enterococci (ENT) - enumeration using membrane filtration) were also monitored. Samples were collected every fortnight, during a twelve-month period, at each stage of four full-scale wastewater treatment plants (WWTP) in southern England (two activated sludge (AS) and two trickling filter (TF) plants) (n = 360 samples). FIB and SOMPH were consistently found in all samples tested, whereas F-RNAPH, Bf124PH and HuAdV were less frequently detected, especially following AS treatment. The detection rate of NoV was low and consequently discussion of this group of viruses is limited. Concentrations of SOMPH and FIB were statistically higher (p value < 0.05) than concentrations of F-RNAPH, Bf124PH and HuAdV in raw wastewater. FIB were more effectively removed than phages in both systems. Removal rates of HuAdV were similar to those of phages at the secondary treatment stage of both systems. In TF systems, HuAdV were removed at the same rate as F-RNAPH, but at lower rates than SOMPH and Bf124PH. The findings suggest that phages (in particular SOMPH) are better indicators of the fate of viral pathogens in WWTP than existing FIB and that these organisms may have a useful role to play in future sanitation safety planning.


Assuntos
Adenoviridae/isolamento & purificação , Colífagos/isolamento & purificação , Norovirus/isolamento & purificação , Águas Residuárias/virologia , Purificação da Água/estatística & dados numéricos , Bactérias/virologia , Bacteriófagos , Bacteroides fragilis/virologia , Colífagos/genética , Desinfecção , Inglaterra , Enterococcus/isolamento & purificação , Fezes/microbiologia , Humanos , Esgotos/microbiologia , Microbiologia da Água , Purificação da Água/métodos
6.
PLoS One ; 13(7): e0201344, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30048542

RESUMO

Ebola and cholera treatment centres (ETC and CTC) generate considerable quantities of excreta that can further the transmission of disease amongst patients and health workers. Therefore, approaches for the safe handling, containment and removal of excreta within such settings are needed to minimise the likelihood of onward disease transmission. This study compared the performance and suitability of three chlorine-based approaches (0.5% HTH, NaDCC and NaOCl (domestic bleach)) and three lime-based approaches (10%, 20% and 30% Ca(OH)2). The experiments followed recent recommendations for Ebola Treatment Centres. Three excreta matrices containing either raw municipal wastewater, or raw municipal wastewater plus 10% or 20% (w/v) added faecal sludge, were treated in 14 litre buckets at a ratio of 1:10 (chlorine solutions or lime suspensions: excreta matrix). The effects of mixing versus non-mixing and increasing contact time (10 and 30 mins) were also investigated. Bacterial (faecal coliforms (FC) and intestinal enterococci (IE)) and viral (somatic coliphages (SOMPH), F+specific phages (F+PH) and Bacteroides fragilis phages (GB-124PH)) indicators were used to determine the efficacy of each approach. Lime-based approaches provided greater treatment efficacy than chlorine-based approaches, with lime (30% w/v) demonstrating the greatest efficacy (log reductions values, FC = 4.75, IE = 4.16, SOMPH = 2.85, F+PH = 5.13 and GB124PH = 5.41). There was no statistical difference in efficacy between any of the chlorine-based approaches, and the highest log reduction values were: FC = 2.90, IE = 2.36, SOMPH = 3.01, F+PH = 2.36 and GB124PH = 0.74. No statistical difference was observed with respect to contact time for any of the approaches, and no statistical differences were observed with respect to mixing for the chlorine-based approaches. However, statistically significant increases in the efficacy of some lime-based approaches were observed following mixing. These findings provide evidence and practical advice to inform safe handling and containment of excreta and ensure more effective health protection in future emergency settings.


Assuntos
Desinfetantes/química , Desinfecção/métodos , Fezes/microbiologia , Compostos de Cálcio/química , Cloro/química , Cólera/microbiologia , Cólera/prevenção & controle , Halogenação , Doença pelo Vírus Ebola/microbiologia , Doença pelo Vírus Ebola/prevenção & controle , Humanos , Óxidos/química , Esgotos/microbiologia , Hipoclorito de Sódio/química , Águas Residuárias/microbiologia , Microbiologia da Água
7.
Eng. sanit. ambient ; 14(3): 421-430, jul.-set. 2009. tab, ilus
Artigo em Português | LILACS | ID: lil-529920

RESUMO

Este trabalho apresentou os resultados de um estudo realizado durante 19 meses sobre o comportamento de wetlands construídas na remoção de matéria orgânica, sólidos, nutrientes e coliformes, em unidades em escala piloto de fluxo horizontal, subsuperficial e superficial, com tempo de detenção hidráulica entre 1,3 a 5,3 dias, operando como pós-tratamento de efluentes de reatores UASB (esgotos sanitários). A remoção de matéria orgânica e de sólidos mostrou-se elevada e estável, com eficiências médias de 70, 80 e 60 por cento para SST, DBO5 e DQO, respectivamente. A remoção de nutrientes, após início promissor, mostrou-se instável e aparentemente influenciada pela temperatura. O sistema de tratamento revelou elevado potencial de remoção de coliformes, embora com variações relativamente amplas ao longo do período de operação: ≈ 2 log10 de remoção de coliformes totais e 2-4 log10 de remoção de Escherichia coli.


This work presented the results of a 19-month study on the performance of constructed wetlands in terms of organic matter, solids, nutrients and coliforms removal in pilot scale unities with horizontal, subsurface and surface flow, with hydraulic retention time from 1.3 to 5.3 days, as post-treatment of UASB effluents (domestic wastewater). Organic matter and solids were effectively and consistently removed, with average values of 70, 80 and 60 percent for TSS, BOD5 and COD, respectively. Nutrients removal, after a promising start up, became unstable and apparently influenced by temperature. The treatment system has also shown high potential to remove coliforms, although with relatively wide variations over the study period: ≈ 2 log10 reduction of total coliforms and 2-4 log10 reduction of Escherichia coli.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA