Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 20034, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882989

RESUMO

Resistance of cancer cells to chemotherapy is a significant clinical concern and mechanisms regulating cell death in cancer therapy, including apoptosis, autophagy or necrosis, have been extensively investigated over the last decade. Accordingly, the identification of medicinal compounds against chemoresistant cancer cells via new mechanism of action is highly desired. Autophagy is important in inducing cell death or survival in cancer therapy. Recently, novel autophagy activators isolated from natural products were shown to induce autophagic cell death in apoptosis-resistant cancer cells in a calcium-dependent manner. Therefore, enhancement of autophagy may serve as additional therapeutic strategy against these resistant cancers. By computational docking analysis, biochemical assays, and advanced live-cell imaging, we identified that neferine, a natural alkaloid from Nelumbo nucifera, induces autophagy by activating the ryanodine receptor and calcium release. With well-known apoptotic agents, such as staurosporine, taxol, doxorubicin, cisplatin and etoposide, utilized as controls, neferine was shown to induce autophagic cell death in a panel of cancer cells, including apoptosis-defective and -resistant cancer cells or isogenic cancer cells, via calcium mobilization through the activation of ryanodine receptor and Ulk-1-PERK and AMPK-mTOR signaling cascades. Taken together, this study provides insights into the cytotoxic mechanism of neferine-induced autophagy through ryanodine receptor activation in resistant cancers.


Assuntos
Apoptose/efeitos dos fármacos , Morte Celular Autofágica/efeitos dos fármacos , Benzilisoquinolinas/farmacologia , Cálcio/metabolismo , Neoplasias/patologia , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Linhagem Celular Tumoral , Medicamentos de Ervas Chinesas , Humanos , Neoplasias/metabolismo
2.
Br J Pharmacol ; 176(16): 2922-2944, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31124139

RESUMO

BACKGROUND AND PURPOSE: Celastrol exhibits anti-arthritic effects in rheumatoid arthritis (RA), but the role of celastrol-mediated Ca2+ mobilization in treatment of RA remains undefined. Here, we describe a regulatory role for celastrol-induced Ca2+ signalling in synovial fibroblasts of RA patients and adjuvant-induced arthritis (AIA) in rats. EXPERIMENTAL APPROACH: We used computational docking, Ca2+ dynamics and functional assays to study the sarcoplasmic/endoplasmic reticulum Ca2+ ATPase pump (SERCA). In rheumatoid arthritis synovial fibroblasts (RASFs)/rheumatoid arthritis fibroblast-like synoviocytes (RAFLS), mechanisms of Ca2+ -mediated autophagy were analysed by histological, immunohistochemical and flow cytometric techniques. Anti-arthritic effects of celastrol, autophagy induction, and growth rate of synovial fibroblasts in AIA rats were monitored by microCT and immunofluorescence staining. mRNA from joint tissues of AIA rats was isolated for transcriptional analysis of inflammatory genes, using siRNA methods to study calmodulin, calpains, and calcineurin. KEY RESULTS: Celastrol inhibited SERCA to induce autophagy-dependent cytotoxicity in RASFs/RAFLS via Ca2+ /calmodulin-dependent kinase kinase-ß-AMP-activated protein kinase-mTOR pathway and repressed arthritis symptoms in AIA rats. BAPTA/AM hampered the in vitro and in vivo effectiveness of celastrol. Inflammatory- and autoimmunity-associated genes down-regulated by celastrol in joint tissues of AIA rat were restored by BAPTA/AM. Knockdown of calmodulin, calpains, and calcineurin in RAFLS confirmed the role of Ca2+ in celastrol-regulated gene expression. CONCLUSION AND IMPLICATIONS: Celastrol triggered Ca2+ signalling to induce autophagic cell death in RASFs/RAFLS and ameliorated arthritis in AIA rats mediated by calcium-dependent/-binding proteins facilitating the exploitation of anti-arthritic drugs based on manipulation of Ca2+ signalling.


Assuntos
Artrite Experimental/metabolismo , Artrite Reumatoide/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Triterpenos/farmacologia , Animais , Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Autofagia/efeitos dos fármacos , Células Cultivadas , Fibroblastos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos Knockout , Triterpenos Pentacíclicos , Ratos Sprague-Dawley , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Membrana Sinovial/citologia , Triterpenos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA