Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell Biol Int ; 41(3): 239-248, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27888544

RESUMO

Cryopreservation is a feasible alternative to maintaining several cell lines, particularly for immediate therapeutic use, transportation of samples, and implementation of new in vitro studies. This work parts from the hypothesis that the medium of cryopreservation composed by 90% of conditioned medium (CM) supports cryopreservation of equine umbilical cord intervascular matrix mesenchymal stem cells (UCIM-MSCs), allowing the maintenance of the biological properties for the establishment of cell banks intended for therapeutic use and in vitro studies. Thus, we evaluated the viability, apoptosis/necrosis rates, immunophenotypic profile (IP), chromosomal stability, clonicity, and differentiation potential of UCIM-MSCs cryopreserved with four different mediums (with FBS: M1, M3, M4 and without FBS: M2). After 3 months of cryopreservation, samples were thawed and analyzed. The potential of differentiation in the mesodermal lineages, clonicity, and the chromosomal stability were maintained after cryopreservation of UCIM-MSCs with medium containing FBS. Changes (P < 0.05) at IP for some markers were observed at cells cryopreserved with medium M1-M3. Only the UCIM-MSCs cryopreserved with the CM (M4) had similar viability post-thaw (P = 0.23) when compared with fresh cells. We proved the hypothesis that the medium of cryopreservation containing CM supports the cryopreservation of UCIM-MSCs, at the experimental conditions, being the medium that better maintains the biological characteristics observed at fresh cells. Thus, future studies of UCIM-MSCs secretome should be conducted to better understand the beneficial and protective effects of the CM during the freezing process.


Assuntos
Criopreservação/métodos , Meios de Cultivo Condicionados/farmacologia , Células-Tronco Mesenquimais/fisiologia , Cordão Umbilical/citologia , Cordão Umbilical/fisiologia , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Cavalos , Células-Tronco Mesenquimais/efeitos dos fármacos , Cordão Umbilical/efeitos dos fármacos
2.
Cell Biol Int ; 40(12): 1332-1339, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27699929

RESUMO

Endometrial mesenchymal stem/progenitor cells (eMSCs) are multipotent cells known to modulate the immune system and have clinical application for human and animal health. This makes these bovines cells attractive for dual use as cellular therapy and experimental model. The aim of this study was to isolate, evaluate the differentiation potential, immunophenotypic and immunocytochemistry characteristics, chromosomal stability, cloning efficiency, and cryopreservation response of bovine eMSCs collected in two phases of the estrous cycle. For this, cells were isolated and submitted to differentiation for adipogenic and osteogenic lineage. The cells were then characterized by flow cytometer (FC) (vimentin, CD29, CD44, MHC-II, CD34) and immunocytochemistry (vimentin, pan-cytokeratin, CD44) and submitted to cytogenetic and cloning efficiency assay. The cells were also cryopreserved using two different medium of cryopreservation and analyzed by FC for viability, necrosis, late-apoptosis + necrosis, and initial apoptosis rates before and after cryopreservation. We obtained homogeneous cell populations which have fibroblastic morphology and adherence to plastic. These cells expressed high levels of markers CD29, CD44, and vimentin, low expression levels for CD34 and no MHC-II. The cells were chromosomally stable (2n = 60) with high cloning efficiency and no difference (P > 0.05) between medium of cryopreservation or phase was observed after thawing. We showed the presence and differentiation potential of bovine eMSCs, with chromosomal stability and great response to cryopreservation with both medium, which has implications for build biobanks or development of new therapeutic approaches to combat uterine diseases or to study.


Assuntos
Endométrio/citologia , Células-Tronco Mesenquimais/citologia , Adipogenia , Animais , Biomarcadores/metabolismo , Bovinos , Diferenciação Celular , Linhagem da Célula , Ensaio de Unidades Formadoras de Colônias , Criopreservação , Feminino , Fibroblastos/citologia , Citometria de Fluxo , Imuno-Histoquímica , Imunofenotipagem , Cariotipagem , Osteogênese
3.
Theriogenology ; 100: 8-15, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28708537

RESUMO

To the best of our knowledge, this is the first study describing the proteome of equine umbilical cord intervascular matrix mesenchymal stem cells (UCIM-MSCs) in a global and functional manner. The aim of this work was to analyze the proteome of previously characterized UCIM-MSCs to determine protein abundance and classify the identified proteins according to Gene Ontology (GO) terms. Protein classification analysis according to biological process, molecular function and cellular component was performed using the PANTHER (Protein ANalysis THrough Evolutionary Relationships) Classification System, which revealed enrichment for 42 biological processes, 23 molecular functions and 18 cellular components. Protein abundance was estimated according to the emPAI method (Exponential Modified Protein Abundance Index). The two most abundant proteins in the proteome of UCIM-MSCs were the cytoskeletal proteins actin and vimentin, which have important roles in cell stability and motility. Additionally, we identified 14 cell surface antigens. Three of them, CD44, CD90 and CD105, had been previously validated by flow cytometry. In the present study, we also identified important information about the biological properties of UCIM-MSCs such as differentiation potential, low immunogenicity (low MHC-II expression) and chromosomal stability, which reinforces their use for cell therapy. Together with the proteomic findings, this information allowed us to infer the functional relevance of several activities related to primary metabolic processes, protein synthesis, production of vesicle coats, vesicle-mediated transport and antioxidant activity. In addition, the identification of different cell surface markers may help establish an immunophenotypic panel suitable for the characterization of MSCs from equine fetal membranes.


Assuntos
Cavalos/fisiologia , Células-Tronco Mesenquimais/metabolismo , Proteoma , Cordão Umbilical/citologia , Animais , Regulação da Expressão Gênica/fisiologia
4.
Int J Stem Cells ; 9(2): 239-249, 2016 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-27572709

RESUMO

BACKGROUND AND OBJECTIVES: Mesenchymal stromal cells (MSCs) have great therapeutic potential, particularly in the process of tissue repair and immunomodulation through the secretion of biomolecules. Thus, the aim of this study was to evaluate the hypothesis that intramuscular transplantation of allogeneic MSCs obtained from equine umbilical cord (UC-MSCs) is safe, demonstrating that this is a suitable source of stem cells for therapeutic use. METHODS AND RESULTS: For this, UC-MSCs were cultured, characterized and cryopreserved for future transplantation in six healthy mares. On day 0, transplantation of three million UC-MSCs diluted in Hank's Balanced Solution (HBSS) was performed on right and left sides of the rump muscle. As a control, HBSS injections were performed caudally in the same muscle. Muscle biopsies were obtained as a control 30 days before transplantation (D-30). The biopsies were collected again on day 2 (left side) and day 7 (right side) post transplantation and examined histologically. All procedures were preceded by ultrasound examination and blood sampling. Hematologic evaluation remained within normal limits and no differences were observed between time points (p>0.05). Ultrasound examination was suggestive of inflammation 48 hours after transplantation in both groups (control and treated). At histological evaluation it was found only discrete inflammation signals between D-30×D2 (p<0.05) in the treated group, without differences (p> 0.05) between the groups at different time points. CONCLUSIONS: Equine UC-MSCs under the experimental conditions did not promote severe inflammation that causes tissue damage or lead to its rejection by the host organism and therefore has a good potential for clinical use.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA