Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 28(16): 23122-23132, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32752313

RESUMO

We demonstrate the retrieval of deep subwavelength structural information in nano-optical polarizers by scatterometry of quasi-bound states in the continuum (quasi-BICs). To this end, we investigate titanium dioxide wire grid polarizers for application wavelengths in the deep ultraviolet (DUV) spectral range fabricated with a self-aligned double-patterning process. In contrast to the time-consuming and elaborate measurement techniques like scanning electron microscopy, asymmetry induced quasi-BICs occurring in the near ultraviolet and visible spectral range provide an easily accessible and efficient probe mechanism. Thereby, dimensional parameters are retrieved with uncertainties in the sub-nanometer range. Our results show that BICs are a promising tool for process control in optics and semiconductor technology.

2.
Nanomaterials (Basel) ; 10(5)2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32408652

RESUMO

Staying in control of delicate processes in the evermore emerging field of micro, nano and quantum-technologies requires suitable devices to measure temperature and temperature flows with high thermal and spatial resolution. In this work, we design optical microring resonators (ORRs) made of different materials (silicon, diamond and gallium nitride) and simulate their temperature behavior using several finite-element methods. We predict the resonance frequencies of the designed devices and their temperature-induced shift (16.8 pm K-1 for diamond, 68.2 pm K-1 for silicon and 30.4 pm K-1 for GaN). In addition, the influence of two-photon-absorption (TPA) and the associated self-heating on the accuracy of the temperature measurement is analysed. The results show that owing to the absence of intrinsic TPA-processes self-heating at resonance is less critical in diamond and GaN than in silicon, with the threshold intensity I th = α / ß , α and ß being the linear and quadratic absorption coefficients, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA