Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
J Biol Chem ; 298(7): 102144, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35714772

RESUMO

The bacterial second messenger c-di-AMP controls essential cellular processes, including potassium and osmolyte homeostasis. This makes synthesizing enzymes and components involved in c-di-AMP signal transduction intriguing as potential targets for drug development. The c-di-AMP receptor protein DarB of Bacillus subtilis binds the Rel protein and triggers the Rel-dependent stringent response to stress conditions; however, the structural basis for this trigger is unclear. Here, we report crystal structures of DarB in the ligand-free state and of DarB complexed with c-di-AMP, 3'3'-cGAMP, and AMP. We show that DarB forms a homodimer with a parallel, head-to-head assembly of the monomers. We also confirm the DarB dimer binds two cyclic dinucleotide molecules or two AMP molecules; only one adenine of bound c-di-AMP is specifically recognized by DarB, while the second protrudes out of the donut-shaped protein. This enables DarB to bind also 3'3'-cGAMP, as only the adenine fits in the active site. In absence of c-di-AMP, DarB binds to Rel and stimulates (p)ppGpp synthesis, whereas the presence of c-di-AMP abolishes this interaction. Furthermore, the DarB crystal structures reveal no conformational changes upon c-di-AMP binding, leading us to conclude the regulatory function of DarB on Rel must be controlled directly by the bound c-di-AMP. We thus derived a structural model of the DarB-Rel complex via in silico docking, which was validated with mass spectrometric analysis of the chemically crosslinked DarB-Rel complex and mutagenesis studies. We suggest, based on the predicted complex structure, a mechanism of stringent response regulation by c-di-AMP.


Assuntos
Proteínas de Bactérias , Fosfatos de Dinucleosídeos , Adenina/metabolismo , Monofosfato de Adenosina/metabolismo , Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Fosfatos de Dinucleosídeos/química , Fosfatos de Dinucleosídeos/metabolismo
2.
Hum Mol Genet ; 30(22): 2068-2081, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34170319

RESUMO

Primary autosomal recessive microcephaly and Seckel syndrome spectrum disorders (MCPH-SCKS) include a heterogeneous group of autosomal recessive inherited diseases characterized by primary (congenital) microcephaly, the absence of visceral abnormalities, and a variable degree of cognitive impairment, short stature and facial dysmorphism. Recently, biallelic variants in the nuclear pore complex (NPC) component nucleoporin 85 gene (NUP85) were reported to cause steroid-resistant nephrotic syndrome (SRNS). Here, we report biallelic variants in NUP85 in two pedigrees with an MCPH-SCKS phenotype spectrum without SRNS, thereby expanding the phenotypic spectrum of NUP85-linked diseases. Structural analysis predicts the identified NUP85 variants cause conformational changes that could have an effect on NPC architecture or on its interaction with other NUPs. We show that mutant NUP85 is, however, associated with a reduced number of NPCs but unaltered nucleocytoplasmic compartmentalization, abnormal mitotic spindle morphology, and decreased cell viability and proliferation in one patient's cells. Our results also indicate the link of common cellular mechanisms involved in MCPH-SCKS spectrum disorders and NUP85-associated diseases. In addition to the previous studies, our results broaden the phenotypic spectrum of NUP85-linked human disease and propose a role for NUP85 in nervous system development.


Assuntos
Nanismo/diagnóstico , Nanismo/genética , Microcefalia/diagnóstico , Microcefalia/genética , Mutação , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Fenótipo , Encéfalo/anormalidades , Criança , Pré-Escolar , Análise Mutacional de DNA , Feminino , Fibroblastos/metabolismo , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Lactente , Recém-Nascido , Masculino , Complexo de Proteínas Formadoras de Poros Nucleares/química , Linhagem , Síndrome
3.
Biol Chem ; 404(8-9): 851-866, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37441768

RESUMO

Splicing of precursor mRNAs is a hallmark of eukaryotic cells, performed by a huge macromolecular machine, the spliceosome. Four DEAH-box ATPases are essential components of the spliceosome, which play an important role in the spliceosome activation, the splicing reaction, the release of the spliced mRNA and intron lariat, and the disassembly of the spliceosome. An integrative approach comprising X-ray crystallography, single particle cryo electron microscopy, single molecule FRET, and molecular dynamics simulations provided deep insights into the structure, dynamics and function of the spliceosomal DEAH-box ATPases.


Assuntos
Proteínas de Saccharomyces cerevisiae , Spliceossomos , Spliceossomos/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , RNA Helicases DEAD-box/metabolismo , Splicing de RNA
4.
Biol Chem ; 404(8-9): 791-805, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37210735

RESUMO

Soluble nuclear transport receptors and stationary nucleoporins are at the heart of the nucleocytoplasmic transport machinery. A subset of nucleoporins contains characteristic and repetitive FG (phenylalanine-glycine) motifs, which are the basis for the permeability barrier of the nuclear pore complex (NPC) that controls transport of macromolecules between the nucleus and the cytoplasm. FG-motifs can interact with each other and/or with transport receptors, mediating their translocation across the NPC. The molecular details of homotypic and heterotypic FG-interactions have been analyzed at the structural level. In this review, we focus on the interactions of nucleoporins with nuclear transport receptors. Besides the conventional FG-motifs as interaction spots, a thorough structural analysis led us to identify additional similar motifs at the binding interface between nucleoporins and transport receptors. A detailed analysis of all known human nucleoporins revealed a large number of such phenylalanine-containing motifs that are not buried in the predicted 3D-structure of the respective protein but constitute part of the solvent-accessible surface area. Only nucleoporins that are rich in conventional FG-repeats are also enriched for these motifs. This additional layer of potential low-affinity binding sites on nucleoporins for transport receptors may have a strong impact on the interaction of transport complexes with the nuclear pore and, thus, the efficiency of nucleocytoplasmic transport.


Assuntos
Complexo de Proteínas Formadoras de Poros Nucleares , Fenilalanina , Humanos , Transporte Ativo do Núcleo Celular , Complexo de Proteínas Formadoras de Poros Nucleares/química , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Sítios de Ligação , Fenilalanina/química , Fenilalanina/metabolismo
5.
PLoS Genet ; 14(12): e1007845, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30543681

RESUMO

Nucleoporins build the nuclear pore complex (NPC), which, as sole gate for nuclear-cytoplasmic exchange, is of outmost importance for normal cell function. Defects in the process of nucleocytoplasmic transport or in its machinery have been frequently described in human diseases, such as cancer and neurodegenerative disorders, but only in a few cases of developmental disorders. Here we report biallelic mutations in the nucleoporin NUP88 as a novel cause of lethal fetal akinesia deformation sequence (FADS) in two families. FADS comprises a spectrum of clinically and genetically heterogeneous disorders with congenital malformations related to impaired fetal movement. We show that genetic disruption of nup88 in zebrafish results in pleiotropic developmental defects reminiscent of those seen in affected human fetuses, including locomotor defects as well as defects at neuromuscular junctions. Phenotypic alterations become visible at distinct developmental stages, both in affected human fetuses and in zebrafish, whereas early stages of development are apparently normal. The zebrafish phenotypes caused by nup88 deficiency are rescued by expressing wild-type Nup88 but not the disease-linked mutant forms of Nup88. Furthermore, using human and mouse cell lines as well as immunohistochemistry on fetal muscle tissue, we demonstrate that NUP88 depletion affects rapsyn, a key regulator of the muscle nicotinic acetylcholine receptor at the neuromuscular junction. Together, our studies provide the first characterization of NUP88 in vertebrate development, expand our understanding of the molecular events causing FADS, and suggest that variants in NUP88 should be investigated in cases of FADS.


Assuntos
Artrogripose/genética , Genes Letais , Mutação , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Alelos , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Artrogripose/embriologia , Artrogripose/fisiopatologia , Consanguinidade , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Modelos Moleculares , Proteínas Musculares/metabolismo , Junção Neuromuscular/fisiopatologia , Complexo de Proteínas Formadoras de Poros Nucleares/química , Complexo de Proteínas Formadoras de Poros Nucleares/deficiência , Linhagem , Gravidez , Conformação Proteica , Receptores Nicotínicos/metabolismo , Homologia de Sequência de Aminoácidos , Peixe-Zebra/anormalidades , Peixe-Zebra/genética , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética
6.
J Biol Chem ; 294(27): 10463-10470, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31118276

RESUMO

Cyclic di-AMP (c-di-AMP) is the only second messenger known to be essential for bacterial growth. It has been found mainly in Gram-positive bacteria, including pathogenic bacteria like Listeria monocytogenes CdaA is the sole diadenylate cyclase in L. monocytogenes, making this enzyme an attractive target for the development of novel antibiotic compounds. Here we report crystal structures of CdaA from L. monocytogenes in the apo state, in the post-catalytic state with bound c-di-AMP and catalytic Co2+ ions, as well as in a complex with AMP. These structures reveal the flexibility of a tyrosine side chain involved in locking the adenine ring after ATP binding. The essential role of this tyrosine was confirmed by mutation to Ala, leading to drastic loss of enzymatic activity.


Assuntos
Proteínas de Bactérias/química , Listeria monocytogenes/enzimologia , Fósforo-Oxigênio Liases/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Domínio Catalítico , Cobalto/química , Cobalto/metabolismo , Cristalografia por Raios X , Fosfatos de Dinucleosídeos/química , Fosfatos de Dinucleosídeos/metabolismo , Ligantes , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Fósforo-Oxigênio Liases/genética , Fósforo-Oxigênio Liases/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
7.
J Biol Chem ; 293(16): 5781-5792, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29514981

RESUMO

Utilization of energy-rich carbon sources such as glucose is fundamental to the evolutionary success of bacteria. Glucose can be catabolized via glycolysis for feeding the intermediary metabolism. The methylglyoxal synthase MgsA produces methylglyoxal from the glycolytic intermediate dihydroxyacetone phosphate. Methylglyoxal is toxic, requiring stringent regulation of MgsA activity. In the Gram-positive bacterium Bacillus subtilis, an interaction with the phosphoprotein Crh controls MgsA activity. In the absence of preferred carbon sources, Crh is present in the nonphosphorylated state and binds to and thereby inhibits MgsA. To better understand the mechanism of regulation of MgsA, here we performed biochemical and structural analyses of B. subtilis MgsA and of its interaction with Crh. Our results indicated that MgsA forms a hexamer (i.e. a trimer of dimers) in the crystal structure, whereas it seems to exist in an equilibrium between a dimer and hexamer in solution. In the hexamer, two alternative dimers could be distinguished, but only one appeared to prevail in solution. Further analysis strongly suggested that the hexamer is the biologically active form. In vitro cross-linking studies revealed that Crh interacts with the N-terminal helices of MgsA and that the Crh-MgsA binding inactivates MgsA by distorting and thereby blocking its active site. In summary, our results indicate that dimeric and hexameric MgsA species exist in an equilibrium in solution, that the hexameric species is the active form, and that binding to Crh deforms and blocks the active site in MgsA.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Carbono-Oxigênio Liases/metabolismo , Fosfoproteínas/metabolismo , Mapas de Interação de Proteínas , Bacillus subtilis/química , Proteínas de Bactérias/química , Ciclo do Carbono , Carbono-Oxigênio Liases/química , Cristalografia por Raios X , Modelos Moleculares , Fosfoproteínas/química , Conformação Proteica , Multimerização Proteica
8.
Methods ; 125: 63-69, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28668587

RESUMO

The splicing of eukaryotic precursor mRNAs requires the activity of at least three DEAD-box helicases, one Ski2-like helicase and four DEAH-box helicases. High resolution structures for five of these spliceosomal helicases were obtained by means of X-ray crystallography. Additional low resolution structural information could be derived from single particle cryo electron microscopy and small angle X-ray scattering. The functional characterization includes biochemical methods to measure the ATPase and helicase activities. This review gives an overview on the techniques used to gain insights in to the structure and function of spliceosomal helicases.


Assuntos
Microscopia Crioeletrônica/métodos , Cristalografia por Raios X/métodos , RNA Helicases/ultraestrutura , Splicing de RNA/genética , Spliceossomos/enzimologia , Modelos Moleculares , Mutação , Conformação Proteica , RNA Helicases/química , RNA Helicases/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Ribonucleoproteínas Nucleares Pequenas/química , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Espalhamento a Baixo Ângulo , Difração de Raios X/métodos
9.
J Biol Chem ; 290(10): 6596-606, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25605729

RESUMO

The recently identified second messenger cyclic di-AMP (c-di-AMP) is involved in several important cellular processes, such as cell wall metabolism, maintenance of DNA integrity, ion transport, transcription regulation, and allosteric regulation of enzyme function. Interestingly, c-di-AMP is essential for growth of the Gram-positive model bacterium Bacillus subtilis. Although the genome of B. subtilis encodes three c-di-AMP-producing diadenlyate cyclases that can functionally replace each other, the phylogenetically related human pathogens like Listeria monocytogenes and Staphylococcus aureus possess only one enzyme, the diadenlyate cyclase CdaA. Because CdaA is also essential for growth of these bacteria, the enzyme is a promising target for the development of novel antibiotics. Here we present the first crystal structure of the L. monocytogenes CdaA diadenylate cyclase domain that is conserved in many human pathogens. Moreover, biochemical characterization of the cyclase revealed an unusual metal cofactor requirement.


Assuntos
Proteínas de Bactérias/química , Cristalografia por Raios X , Listeria monocytogenes/enzimologia , Fósforo-Oxigênio Liases/química , Sequência de Aminoácidos , Bacillus subtilis/química , Catálise , Parede Celular/química , Cobalto/química , Fosfatos de Dinucleosídeos/metabolismo , Humanos , Fósforo-Oxigênio Liases/genética , Fósforo-Oxigênio Liases/metabolismo , Conformação Proteica
10.
J Biol Chem ; 290(5): 3069-80, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25433025

RESUMO

The cyclic dimeric AMP nucleotide c-di-AMP is an essential second messenger in Bacillus subtilis. We have identified the protein DarA as one of the prominent c-di-AMP receptors in B. subtilis. Crystal structure analysis shows that DarA is highly homologous to PII signal transducer proteins. In contrast to PII proteins, the functionally important B- and T-loops are swapped with respect to their size. DarA is a homotrimer that binds three molecules of c-di-AMP, each in a pocket located between two subunits. We demonstrate that DarA is capable to bind c-di-AMP and with lower affinity cyclic GMP-AMP (3'3'-cGAMP) but not c-di-GMP or 2'3'-cGAMP. Consistently the crystal structure shows that within the ligand-binding pocket only one adenine is highly specifically recognized, whereas the pocket for the other adenine appears to be promiscuous. Comparison with a homologous ligand-free DarA structure reveals that c-di-AMP binding is accompanied by conformational changes of both the fold and the position of the B-loop in DarA.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Fosfatos de Dinucleosídeos/metabolismo , Bacillus subtilis/metabolismo , Cristalografia por Raios X , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transdução de Sinais
11.
Mol Microbiol ; 97(2): 189-204, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25869574

RESUMO

Second messengers are key components of many signal transduction pathways. In addition to cyclic AMP, ppGpp and cyclic di-GMP, many bacteria use also cyclic di-AMP as a second messenger. This molecule is synthesized by distinct classes of diadenylate cyclases and degraded by phosphodiesterases. The control of the intracellular c-di-AMP pool is very important since both a lack of this molecule and its accumulation can inhibit growth of the bacteria. In many firmicutes, c-di-AMP is essential, making it the only known essential second messenger. Cyclic di-AMP is implicated in a variety of functions in the cell, including cell wall metabolism, potassium homeostasis, DNA repair and the control of gene expression. To understand the molecular mechanisms behind these functions, targets of c-di-AMP have been identified and characterized. Interestingly, c-di-AMP can bind both proteins and RNA molecules. Several proteins that interact with c-di-AMP are required to control the intracellular potassium concentration. In Bacillus subtilis, c-di-AMP also binds a riboswitch that controls the expression of a potassium transporter. Thus, c-di-AMP is the only known second messenger that controls a biological process by interacting with both a protein and the riboswitch that regulates its expression. Moreover, in Listeria monocytogenes c-di-AMP controls the activity of pyruvate carboxylase, an enzyme that is required to replenish the citric acid cycle. Here, we review the components of the c-di-AMP signaling system.


Assuntos
Fosfatos de Dinucleosídeos/metabolismo , Sistemas do Segundo Mensageiro , Bactérias/enzimologia , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Piruvato Carboxilase/metabolismo , Riboswitch
12.
PLoS Biol ; 11(12): e1001750, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24391470

RESUMO

Morphological development of fungi and their combined production of secondary metabolites are both acting in defence and protection. These processes are mainly coordinated by velvet regulators, which contain a yet functionally and structurally uncharacterized velvet domain. Here we demonstrate that the velvet domain of VosA is a novel DNA-binding motif that specifically recognizes an 11-nucleotide consensus sequence consisting of two motifs in the promoters of key developmental regulatory genes. The crystal structure analysis of the VosA velvet domain revealed an unforeseen structural similarity with the Rel homology domain (RHD) of the mammalian transcription factor NF-κB. Based on this structural similarity several conserved amino acid residues present in all velvet domains have been identified and shown to be essential for the DNA binding ability of VosA. The velvet domain is also involved in dimer formation as seen in the solved crystal structures of the VosA homodimer and the VosA-VelB heterodimer. These findings suggest that defence mechanisms of both fungi and animals might be governed by structurally related DNA-binding transcription factors.


Assuntos
Proteínas de Ligação a DNA/genética , Regulação Fúngica da Expressão Gênica/fisiologia , NF-kappa B/genética , Aspergillus nidulans/genética , Aspergillus nidulans/fisiologia , Sequência Consenso/genética , Sequência Consenso/fisiologia , DNA Fúngico/genética , DNA Fúngico/fisiologia , Proteínas de Ligação a DNA/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação Fúngica da Expressão Gênica/genética , Genes Fúngicos/genética , Genes Fúngicos/fisiologia , Genes rel/genética , Genes rel/fisiologia , NF-kappa B/fisiologia
13.
Proc Natl Acad Sci U S A ; 110(3): 960-5, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23277578

RESUMO

In eukaryotes, the nucleocytoplasmic transport of macromolecules is mainly mediated by soluble nuclear transport receptors of the karyopherin-ß superfamily termed importins and exportins. The highly versatile exportin chromosome region maintenance 1 (CRM1) is essential for nuclear depletion of numerous structurally and functionally unrelated protein and ribonucleoprotein cargoes. CRM1 has been shown to adopt a toroidal structure in several functional transport complexes and was thought to maintain this conformation throughout the entire nucleocytoplasmic transport cycle. We solved crystal structures of free CRM1 from the thermophilic eukaryote Chaetomium thermophilum. Surprisingly, unbound CRM1 exhibits an overall extended and pitched superhelical conformation. The two regulatory regions, namely the acidic loop and the C-terminal α-helix, are dramatically repositioned in free CRM1 in comparison with the ternary CRM1-Ran-Snurportin1 export complex. Single-particle EM analysis demonstrates that, in a noncrystalline environment, free CRM1 exists in equilibrium between extended, superhelical and compact, ring-like conformations. Molecular dynamics simulations show that the C-terminal helix plays an important role in regulating the transition from an extended to a compact conformation and reveal how the binding site for nuclear export signals of cargoes is modulated by different CRM1 conformations. Combining these results, we propose a model for the cooperativity of CRM1 export complex assembly involving the long-range allosteric communication between the distant binding sites of GTP-bound Ran and cargo.


Assuntos
Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Carioferinas/química , Carioferinas/metabolismo , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Transporte Ativo do Núcleo Celular , Regulação Alostérica , Sequência de Aminoácidos , Sítios de Ligação , Chaetomium/química , Chaetomium/genética , Chaetomium/metabolismo , Cristalografia por Raios X , Proteínas Fúngicas/genética , Proteínas Fúngicas/ultraestrutura , Carioferinas/genética , Carioferinas/ultraestrutura , Microscopia Eletrônica , Modelos Biológicos , Modelos Moleculares , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Conformação Proteica , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/ultraestrutura , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/ultraestrutura , Homologia de Sequência de Aminoácidos , Eletricidade Estática , Proteína Exportina 1
14.
Biophys J ; 109(2): 277-86, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26200863

RESUMO

The nuclear pore complex mediates nucleocytoplasmic transport of macromolecules in eukaryotic cells. Transport through the pore is restricted by a hydrophobic selectivity filter comprising disordered phenylalanine-glycine-rich repeats of nuclear pore proteins. Exchange through the pore requires specialized transport receptors, called exportins and importins, that interact with cargo proteins in a RanGTP-dependent manner. These receptors are highly flexible superhelical structures composed of HEAT-repeat motifs that adopt various degrees of extension in crystal structures. Here, we performed molecular-dynamics simulations using crystal structures of Importin-ß in its free form or in complex with nuclear localization signal peptides as the starting conformation. Our simulations predicted that initially compact structures would adopt extended conformations in hydrophilic buffers, while contracted conformations would dominate in more hydrophobic solutions, mimicking the environment of the nuclear pore. We confirmed this experimentally by Förster resonance energy transfer experiments using dual-fluorophore-labeled Importin-ß. These observations explain seemingly contradictory crystal structures and suggest a possible mechanism for cargo protection during passage of the nuclear pore. Such hydrophobic switching may be a general principle for environmental control of protein function.


Assuntos
beta Carioferinas/química , Transferência Ressonante de Energia de Fluorescência , Humanos , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Maleabilidade , Conformação Proteica , Soluções , Solventes/química , Água/química
15.
Artigo em Inglês | MEDLINE | ID: mdl-39177700

RESUMO

Crystallographic fragment screening has become a pivotal technique in structure-based drug design, particularly for bacterial targets with a crucial role in infectious disease mechanisms. The enzyme CdaA, which synthesizes an essential second messenger cyclic di-AMP (c-di-AMP) in many pathogenic bacteria, has emerged as a promising candidate for the development of novel antibiotics. To identify crystals suitable for fragment screening, CdaA enzymes from Streptococcus pneumoniae, Bacillus subtilis and Enterococcus faecium were purified and crystallized. Crystals of B. subtilis CdaA, which diffracted to the highest resolution of 1.1 Å, were used to perform the screening of 96 fragments, yielding data sets with resolutions spanning from 1.08 to 1.87 Å. A total of 24 structural hits across eight different sites were identified. Four fragments bind to regions that are highly conserved among pathogenic bacteria, specifically the active site (three fragments) and the dimerization interface (one fragment). The coordinates of the three active-site fragments were used to perform an in silico drug-repurposing screen using the OpenEye suite and the DrugBank database. This screen identified tenofovir, an approved drug, that is predicted to interact with the ATP-binding region of CdaA. Its inhibitory potential against pathogenic E. faecium CdaA has been confirmed by ITC measurements. These findings not only demonstrate the feasibility of this approach for identifying lead compounds for the design of novel antibacterial agents, but also pave the way for further fragment-based lead-optimization efforts targeting CdaA.

16.
Acta Crystallogr D Struct Biol ; 80(Pt 5): 350-361, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38682668

RESUMO

CdaA is the most widespread diadenylate cyclase in many bacterial species, including several multidrug-resistant human pathogens. The enzymatic product of CdaA, cyclic di-AMP, is a secondary messenger that is essential for the viability of many bacteria. Its absence in humans makes CdaA a very promising and attractive target for the development of new antibiotics. Here, the structural results are presented of a crystallographic fragment screen against CdaA from Listeria monocytogenes, a saprophytic Gram-positive bacterium and an opportunistic food-borne pathogen that can cause listeriosis in humans and animals. Two of the eight fragment molecules reported here were localized in the highly conserved ATP-binding site. These fragments could serve as potential starting points for the development of antibiotics against several CdaA-dependent bacterial species.


Assuntos
Listeria monocytogenes , Listeria monocytogenes/enzimologia , Cristalografia por Raios X/métodos , Sítios de Ligação , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Modelos Moleculares , Fosfatos de Dinucleosídeos/metabolismo , Fosfatos de Dinucleosídeos/química , Antibacterianos/farmacologia , Humanos , Fósforo-Oxigênio Liases/química , Fósforo-Oxigênio Liases/metabolismo , Conformação Proteica
17.
Plant Physiol ; 160(3): 1251-66, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22987885

RESUMO

In plants, oxylipins regulate developmental processes and defense responses. The first specific step in the biosynthesis of the cyclopentanone class of oxylipins is catalyzed by allene oxide cyclase (AOC) that forms cis(+)-12-oxo-phytodienoic acid. The moss Physcomitrella patens has two AOCs (PpAOC1 and PpAOC2) with different substrate specificities for C18- and C20-derived substrates, respectively. To better understand AOC's catalytic mechanism and to elucidate the structural properties that explain the differences in substrate specificity, we solved and analyzed the crystal structures of 36 monomers of both apo and ligand complexes of PpAOC1 and PpAOC2. From these data, we propose the following intermediates in AOC catalysis: (1) a resting state of the apo enzyme with a closed conformation, (2) a first shallow binding mode, followed by (3) a tight binding of the substrate accompanied by conformational changes in the binding pocket, and (4) initiation of the catalytic cycle by opening of the epoxide ring. As expected, the substrate dihydro analog cis-12,13S-epoxy-9Z,15Z-octadecadienoic acid did not cyclize in the presence of PpAOC1; however, when bound to the enzyme, it underwent isomerization into the corresponding trans-epoxide. By comparing complex structures of the C18 substrate analog with in silico modeling of the C20 substrate analog bound to the enzyme allowed us to identify three major molecular determinants responsible for the different substrate specificities (i.e. larger active site diameter, an elongated cavity of PpAOC2, and two nonidentical residues at the entrance of the active site).


Assuntos
Bryopsida/enzimologia , Oxirredutases Intramoleculares/química , Oxirredutases Intramoleculares/metabolismo , Biocatálise , Vias Biossintéticas , Domínio Catalítico , Cristalografia por Raios X , Ciclopentanos/química , Ciclopentanos/metabolismo , Ácidos Graxos Insaturados/química , Ácidos Graxos Insaturados/metabolismo , Oxirredutases Intramoleculares/isolamento & purificação , Isoenzimas/química , Isoenzimas/metabolismo , Isomerismo , Modelos Moleculares , Oxilipinas/química , Oxilipinas/metabolismo , Estrutura Secundária de Proteína , Especificidade por Substrato
18.
Front Neurol ; 14: 1124886, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36846113

RESUMO

Nucleoporin (NUP) 85 is a member of the Y-complex of nuclear pore complex (NPC) that is key for nucleocytoplasmic transport function, regulation of mitosis, transcription, and chromatin organization. Mutations in various nucleoporin genes have been linked to several human diseases. Among them, NUP85 was linked to childhood-onset steroid-resistant nephrotic syndrome (SRNS) in four affected individuals with intellectual disability but no microcephaly. Recently, we broaden the phenotype spectrum of NUP85-associated disease by reporting NUP85 variants in two unrelated individuals with primary autosomal recessive microcephaly (MCPH) and Seckel syndrome (SCKS) spectrum disorders (MCPH-SCKS) without SRNS. In this study, we report compound heterozygous NUP85 variants in an index patient with only MCPH phenotype, but neither Seckel syndrome nor SRNS was reported. We showed that the identified missense variants cause reduced cell viability of patient-derived fibroblasts. Structural simulation analysis of double variants is predicted to alter the structure of NUP85 and its interactions with neighboring NUPs. Our study thereby further expands the phenotypic spectrum of NUP85-associated human disorder and emphasizes the crucial role of NUP85 in the brain development and function.

19.
Nucleic Acids Res ; 38(16): 5581-93, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20421206

RESUMO

Mass spectrometry allows the elucidation of molecular details of the interaction domains of the individual components in macromolecular complexes subsequent to cross-linking of the individual components. Here, we applied chemical and UV cross-linking combined with tandem mass-spectrometric analysis to identify contact sites of the nuclear import adaptor snurportin 1 to the small ribonucleoprotein particle U1 snRNP in addition to the known interaction of m(3)G cap and snurportin 1. We were able to define previously unknown sites of protein-protein and protein-RNA interactions on the molecular level within U1 snRNP. We show that snurportin 1 interacts with its central m(3)G-cap-binding domain with Sm proteins and with its extreme C-terminus with stem-loop III of U1 snRNA. The crosslinking data support the idea of a larger interaction area between snurportin 1 and U snRNPs and the contact sites identified prove useful for modeling the spatial arrangement of snurportin 1 domains when bound to U1 snRNP. Moreover, this suggests a functional nuclear import complex that assembles around the m(3)G cap and the Sm proteins only when the Sm proteins are bound and arranged in the proper orientation to the cognate Sm site in U snRNA.


Assuntos
Proteínas de Ligação ao Cap de RNA/química , Ribonucleoproteína Nuclear Pequena U1/química , Sequência de Aminoácidos , Sítios de Ligação , Reagentes de Ligações Cruzadas , Dados de Sequência Molecular , Domínios e Motivos de Interação entre Proteínas , Proteínas de Ligação ao Cap de RNA/metabolismo , RNA Nuclear Pequeno/química , RNA Nuclear Pequeno/metabolismo , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Ribonucleoproteínas Nucleares Pequenas/química , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Succinimidas , Espectrometria de Massas em Tandem
20.
Cell Rep ; 39(9): 110879, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35649362

RESUMO

The MDM2 oncoprotein antagonizes the tumor suppressor p53 by physical interaction and ubiquitination. However, it also sustains the progression of DNA replication forks, even in the absence of functional p53. Here, we show that MDM2 binds, inhibits, ubiquitinates, and destabilizes poly(ADP-ribose) polymerase 1 (PARP1). When cellular MDM2 levels are increased, this leads to accelerated progression of DNA replication forks, much like pharmacological inhibition of PARP1. Conversely, overexpressed PARP1 restores normal fork progression despite elevated MDM2. Strikingly, MDM2 profoundly reduces the frequency of fork reversal, revealed as four-way junctions through electron microscopy. Depletion of RECQ1 or the primase/polymerase (PRIMPOL) reverses the MDM2-mediated acceleration of the nascent DNA elongation rate. MDM2 also increases the occurrence of micronuclei, and it exacerbates camptothecin-induced cell death. In conclusion, high MDM2 levels phenocopy PARP inhibition in modulation of fork restart, representing a potential vulnerability of cancer cells.


Assuntos
Replicação do DNA , Proteína Supressora de Tumor p53 , DNA/genética , Dano ao DNA , DNA Primase/metabolismo , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA