Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Hippocampus ; 32(6): 466-477, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35522233

RESUMO

The nucleus reuniens of the thalamus (RE) is an important node between the medial prefrontal cortex (mPFC) and the hippocampus (HPC). Previously, we have shown that its mode of activity and its influence in mPFC-HPC communication is dependent upon brain state. During slow-wave states, RE units are closely and rhythmically coupled to the ongoing mPFC-slow oscillation (SO), while during activated (theta) states, RE neurons fire in an arrhythmic and tonically active manner. Inactivating the RE selectively impoverishes coordination of the SO between mPFC and HPC and interestingly, both mPFC and RE stimulation during the SO cause larger responses in the HPC than during theta. It is unclear if the activity patterns within the RE across states may play a role in both phenomena. Here, we optogenetically excited RE neurons in a tonic fashion to assess the impact on mPFC-HPC coupling. This stimulation decreased the influence of mPFC stimulation in the HPC during SO states, in a manner similar to what is observed across state changes into theta. Importantly, this type of stimulation had no effect on evoked responses during theta. Perhaps more interestingly, tonic optogenetic excitation of the RE also decreased mPFC-HPC SO coherence. Thus, it may not be the integrity of the RE per se that is responsible for efficient communication between mPFC and HPC, but rather the particular state in which RE neurons find themselves. Our results have direct implications for how distant brain regions can communicate most effectively, an issue that is ultimately important for activity-dependent processes occurring during slow-wave sleep-dependent memory consolidation.


Assuntos
Consolidação da Memória , Núcleos da Linha Média do Tálamo , Hipocampo/fisiologia , Consolidação da Memória/fisiologia , Núcleos da Linha Média do Tálamo/fisiologia , Vias Neurais/fisiologia , Córtex Pré-Frontal/fisiologia
2.
Int J Mol Sci ; 23(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35408973

RESUMO

Anesthesia is a powerful tool in neuroscientific research, especially in sleep research where it has the experimental advantage of allowing surgical interventions that are ethically problematic in natural sleep. Yet, while it is well documented that different anesthetic agents produce a variety of brain states, and consequently have differential effects on a multitude of neurophysiological factors, these outcomes vary based on dosages, the animal species used, and the pharmacological mechanisms specific to each anesthetic agent. Thus, our aim was to conduct a controlled comparison of spontaneous electrophysiological dynamics at a surgical plane of anesthesia under six common research anesthetics using a ubiquitous animal model, the Sprague-Dawley rat. From this direct comparison, we also evaluated which anesthetic agents may serve as pharmacological proxies for the electrophysiological features and dynamics of unconscious states such as sleep and coma. We found that at a surgical plane, pentobarbital, isoflurane and propofol all produced a continuous pattern of burst-suppression activity, which is a neurophysiological state characteristically observed during coma. In contrast, ketamine-xylazine produced synchronized, slow-oscillatory activity, similar to that observed during slow-wave sleep. Notably, both urethane and chloral hydrate produced the spontaneous, cyclical alternations between forebrain activation (REM-like) and deactivation (non-REM-like) that are similar to those observed during natural sleep. Thus, choice of anesthesia, in conjunction with continuous brain state monitoring, are critical considerations in order to avoid brain-state confounds when conducting neurophysiological experiments.


Assuntos
Anestésicos , Coma , Anestésicos/farmacologia , Animais , Masculino , Prosencéfalo , Ratos , Ratos Sprague-Dawley , Xilazina/farmacologia
3.
Neurobiol Learn Mem ; 168: 107151, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31881352

RESUMO

The process of memory consolidation is energy-demanding and brain energy deficits result in memory impairments. Indeed, L-lactate, a preferred neuronal energy substrate, enhances the formation of memory, while blockade of the neuronal uptake of L-lactate by either pharmacological means or using its enantiomer D-lactate, impairs memory. Beyond metabolism, both enantiomers of lactate also have signaling properties through the hydroxycarboxylic acid receptor 1 (HCAR1). Thus far, paradigms testing for an effect of lactate on memory modulation have ignored HCAR1 signaling while also mainly performing manipulations before learning and using intracranial administration techniques. Using an inhibitory avoidance (IA) memory protocol, the present study examined the effects of systemic administration of both L- and D-lactate as well as the specific HCAR1 agonist 3,5-dihydroxybenzoic acid (3,5-DHBA) across pre- and post-training periods. We found that post-training subcutaneous injections of either 3,5-DHBA or D-lactate significantly enhanced memory compared to saline controls, whereas L-lactate had no effect, suggesting that HCAR1 signaling in the absence of lactate metabolism supports memory consolidation processes. When administered 15 minutes prior to training, D-lactate and 3,5-DHBA impaired memory compared to saline controls. In contrast, L-lactate treated rats showed memory enhancements as compared to D-lactate-treated rats. Taken together, these results suggest different roles for lactate at different memory stages. It is likely that a metabolic role is at play during learning while HCAR1 signaling may play a greater role during consolidation.


Assuntos
Ácido Láctico/metabolismo , Consolidação da Memória/fisiologia , Memória/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Animais , Aprendizagem da Esquiva , Masculino , Ratos Sprague-Dawley , Transdução de Sinais
4.
J Physiol ; 597(12): 3183-3201, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31038198

RESUMO

KEY POINTS: Persistent inward currents (PICs) in spinal motoneurons are long-lasting, voltage-dependent currents that increase excitability; they are dramatically potentiated by serotonin, muscarine, and noradrenaline (norepinephrine). Loss of these modulators (and the PIC) during sleep is hypothesized as a major contributor to REM sleep atonia. Reduced excitability of XII motoneurons that drive airway muscles and maintain airway patency is causally implicated in obstructive sleep apnoea (OSA), but whether XII motoneurons possess a modulator-sensitive PIC that could be a factor in the reduced airway tone of sleep is unknown. Whole-cell recordings from rat XII motoneurons in brain slices indicate that PIC amplitude increases ∼50% between 1 and 23 days of age, when potentiation of the PIC by 5HT2 , muscarinic, or α1 noradrenergic agonists peaks at <50%, manyfold lower than the potentiation observed in spinal motoneurons. α1 noradrenergic receptor activation produced changes in XII motoneuron firing behaviour consistent with PIC involvement, but indicators of strong PIC activation were never observed; in vivo experiments are needed to determine the role of the modulator-sensitive PIC in sleep-dependent reductions in airway tone. ABSTRACT: Hypoglossal (XII) motoneurons play a key role in maintaining airway patency; reductions in their excitability during sleep through inhibition and disfacilitation, i.e. loss of excitatory modulation, is implicated in obstructive sleep apnoea. In spinal motoneurons, 5HT2 , muscarinic and α1 noradrenergic modulatory systems potentiate persistent inward currents (PICs) severalfold, dramatically increasing excitability. If the PICs in XII and spinal motoneurons are equally sensitive to modulation, loss of the PIC secondary to reduced modulatory tone during sleep could contribute to airway atonia. Modulatory systems also change developmentally. We therefore characterized developmental changes in magnitude of the XII motoneuron PIC and its sensitivity to modulation by comparing, in neonatal (P1-4) and juvenile (P14-23) rat brainstem slices, the PIC elicited by slow voltage ramps in the absence and presence of agonists for 5HT2 , muscarinic, and α1 noradrenergic receptors. XII motoneuron PIC amplitude increased developmentally (from -195 ± 12 to -304 ± 19 pA). In neonatal XII motoneurons, the PIC was only potentiated by α1 receptor activation (5 ± 4%). In contrast, all modulators potentiated the juvenile XII motoneurons PIC (5HT2 , 5 ± 5%; muscarine, 22 ± 11%; α1 , 18 ± 5%). These data suggest that the influence of the PIC and its modulation on XII motoneuron excitability will increase with postnatal development. Notably, the modulator-induced potentiation of the PIC in XII motoneurons was dramatically smaller than the 2- to 6-fold potentiation reported for spinal motoneurons. In vivo measurements are required to determine if the modulator-sensitive, XII motoneuron PIC is an important factor in sleep-state dependent reductions in airway tone.


Assuntos
Neurônios Motores/fisiologia , Envelhecimento/fisiologia , Animais , Animais Recém-Nascidos , Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiologia , Feminino , Masculino , Neurônios Motores/efeitos dos fármacos , Muscarina/farmacologia , Norepinefrina/farmacologia , Ratos Sprague-Dawley , Serotonina/farmacologia
6.
J Physiol ; 596(15): 3245-3269, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-28678385

RESUMO

KEY POINTS: The ventilatory response to reduced oxygen (hypoxia) is biphasic, comprising an initial increase in ventilation followed by a secondary depression. Our findings indicate that, during hypoxia, astrocytes in the pre-Bötzinger complex (preBötC), a critical site of inspiratory rhythm generation, release a gliotransmitter that acts via P2Y1 receptors to stimulate ventilation and reduce the secondary depression. In vitro analyses reveal that ATP excitation of the preBötC involves P2Y1 receptor-mediated release of Ca2+ from intracellular stores. By identifying a role for gliotransmission and the sites, P2 receptor subtype, and signalling mechanisms via which ATP modulates breathing during hypoxia, these data advance our understanding of the mechanisms underlying the hypoxic ventilatory response and highlight the significance of purinergic signalling and gliotransmission in homeostatic control. Clinically, these findings are relevant to conditions in which hypoxia and respiratory depression are implicated, including apnoea of prematurity, sleep disordered breathing and congestive heart failure. ABSTRACT: The hypoxic ventilatory response (HVR) is biphasic, consisting of a phase I increase in ventilation followed by a secondary depression (to a steady-state phase II) that can be life-threatening in premature infants who suffer from frequent apnoeas and respiratory depression. ATP released in the ventrolateral medulla oblongata during hypoxia attenuates the secondary depression. We explored a working hypothesis that vesicular release of ATP by astrocytes in the pre-Bötzinger Complex (preBötC) inspiratory rhythm-generating network acts via P2Y1 receptors to mediate this effect. Blockade of vesicular exocytosis in preBötC astrocytes bilaterally (using an adenoviral vector to specifically express tetanus toxin light chain in astrocytes) reduced the HVR in anaesthetized rats, indicating that exocytotic release of a gliotransmitter within the preBötC contributes to the hypoxia-induced increases in ventilation. Unilateral blockade of P2Y1 receptors in the preBötC via local antagonist injection enhanced the secondary respiratory depression, suggesting that a significant component of the phase II increase in ventilation is mediated by ATP acting at P2Y1 receptors. In vitro responses of the preBötC inspiratory network, preBötC inspiratory neurons and cultured preBötC glia to purinergic agents demonstrated that the P2Y1 receptor-mediated increase in fictive inspiratory frequency involves Ca2+ recruitment from intracellular stores leading to increases in intracellular Ca2+ ([Ca2+ ]i ) in inspiratory neurons and glia. These data suggest that ATP is released by preBötC astrocytes during hypoxia and acts via P2Y1 receptors on inspiratory neurons (and/or glia) to evoke Ca2+ release from intracellular stores and an increase in ventilation that counteracts the hypoxic respiratory depression.


Assuntos
Trifosfato de Adenosina/fisiologia , Astrócitos/fisiologia , Hipóxia/fisiopatologia , Bulbo/fisiologia , Receptores Purinérgicos P2Y1/fisiologia , Animais , Cálcio/fisiologia , Masculino , Ventilação Pulmonar , Ratos Sprague-Dawley
7.
Neuroimage ; 174: 328-339, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29535027

RESUMO

The signature rhythm of slow-wave forebrain activity is the large amplitude, slow oscillation (SO: ∼1 Hz) made up of alternating synchronous periods of activity and silence at the single cell and network levels. On each wave, the SO originates at a unique location and propagates across the neocortex. Attempts to manipulate SO activity using electrical fields have been shown to entrain cortical networks and enhance memory performance. However, neural activity during this manipulation has remained elusive due to methodological issues in typical electrical recordings. Here we took advantage of voltage-sensitive dye (VSD) imaging in a bilateral cortical preparation of urethane-anesthetized mice to track SO cortical activity and its modulation by sinusoidal electrical field stimulation applied to frontal regions. We show that under spontaneous conditions, the SO propagates in two main opposing directional patterns along an anterior lateral - posterior medial axis, displaying a rich variety of possible trajectories on any given wave. Under rhythmic field stimulation, new propagation patterns emerge, which are not observed under spontaneous conditions, reflecting stimulus-entrained activity with distributed and varied anterior initiation zones and a consistent termination zone in the posterior somatosensory cortex. Furthermore, stimulus-induced activity patterns tend to repeat cycle after cycle, showing higher stereotypy than during spontaneous activity. Our results show that slow electrical field stimulation robustly entrains and alters ongoing slow cortical dynamics during sleep-like states, suggesting a mechanism for targeting specific cortical representations to manipulate memory processes.


Assuntos
Ondas Encefálicas , Sincronização Cortical , Estimulação Elétrica , Neocórtex/fisiologia , Animais , Potenciais Somatossensoriais Evocados , Potenciais Evocados Visuais , Camundongos Endogâmicos C57BL , Imagem Óptica , Córtex Somatossensorial/fisiologia
8.
J Neurophysiol ; 120(4): 1505-1515, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29947598

RESUMO

Oxygen (O2) is a crucial element for physiological functioning in mammals. In particular, brain function is critically dependent on a minimum amount of circulating blood levels of O2 and both immediate and lasting neural dysfunction can result following anoxic or hypoxic episodes. Although the effects of deficiencies in O2 levels on the brain have been reasonably well studied, less is known about the influence of elevated levels of O2 (hyperoxia) in inspired gas under atmospheric pressure. This is of importance due to its typical use in surgical anesthesia, in the treatment of stroke and traumatic brain injury, and even in its recreational or alternative therapeutic use. Using local field potential (EEG) recordings in spontaneously breathing urethane-anesthetized and naturally sleeping rats, we characterized the influence of different levels of O2 in inspired gases on brain states. While rats were under urethane anesthesia, administration of 100% O2 elicited a significant and reversible increase in time spent in the deactivated (i.e., slow-wave) state, with concomitant decreases in both heartbeat and respiration rates. Increasing the concentration of carbon dioxide (to 5%) in inspired gas produced the opposite result on EEG states, mainly a decrease in the time spent in the deactivated state. Consistent with this, decreasing concentrations of O2 (to 15%) in inspired gases decreased time spent in the deactivated state. Further confirmation of the hyperoxic effect was found in naturally sleeping animals where it similarly increased time spent in slow-wave (nonrapid eye movement) states. Thus alterations of O2 in inspired air appear to directly affect forebrain EEG states, which has implications for brain function, as well as for the regulation of brain states and levels of forebrain arousal during sleep in both normal and pathological conditions. NEW & NOTEWORTHY We show that alterations of oxygen concentration in inspired air biases forebrain EEG state. Hyperoxia increases the prevalence of slow-wave states. Hypoxia and hypercapnia appear to do the opposite. This suggests that oxidative metabolism is an important stimulant for brain state.


Assuntos
Anestésicos Gerais/farmacologia , Excitabilidade Cortical , Hiperóxia/fisiopatologia , Prosencéfalo/fisiopatologia , Sono REM , Inconsciência/fisiopatologia , Uretana/farmacologia , Animais , Masculino , Prosencéfalo/efeitos dos fármacos , Troca Gasosa Pulmonar , Ratos , Ratos Sprague-Dawley , Respiração
9.
J Neurosci ; 36(23): 6193-8, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27277798

RESUMO

UNLABELLED: Protein kinase M ζ (PKMζ), an atypical isoform of protein kinase C, has been suggested to be necessary and sufficient for the maintenance of long-term potentiation (LTP) and long-term memory (LTM). This evidence is heavily based on the use of ζ inhibitory peptide (ZIP), a supposed specific inhibitor of PKMζ that interferes with both LTP and LTM. Problematically, both LTP and LTM are unaffected in both constitutive and conditional PKMζ knock-out mice, yet both are still impaired by ZIP application, suggesting a nonspecific mechanism of action. Because translational interference can disrupt neural activity, we assessed network activity after a unilateral intrahippocampal infusion of ZIP in anesthetized rats. ZIP profoundly reduced spontaneous hippocampal local field potentials, comparable in magnitude to infusions of lidocaine, but with a slower onset and longer duration. Our results highlight a serious confound in interpreting the behavioral effects of ZIP. We suggest that future molecular approaches in neuroscience consider the intervening level of cellular and systems neurophysiology before claiming influences on behavior. SIGNIFICANCE STATEMENT: Long-term memory in the brain is thought to arise from a sustained molecular process that can maintain changes in synaptic plasticity. A so-called candidate for the title of "the memory molecule" is protein kinase M ζ (PKMζ), mainly because its inhibition by ζ inhibitory peptide (ZIP) interferes with previously established synaptic plasticity and memory. We show that brain applications of ZIP that can impair memory actually profoundly suppress spontaneous brain activity directly or can cause abnormal seizure activity. We suggest that normal brain activity occurring after learning may be a more primary element of memory permanence.


Assuntos
Hipocampo/efeitos dos fármacos , Lipopeptídeos/farmacologia , Potenciação de Longa Duração/efeitos dos fármacos , Inibição Neural/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fatores Etários , Análise de Variância , Anestésicos Locais/farmacologia , Animais , Animais Recém-Nascidos , Peptídeos Penetradores de Células , Lateralidade Funcional , Hipocampo/fisiologia , Lidocaína/farmacologia , Potenciação de Longa Duração/fisiologia , Masculino , Proteína Quinase C/metabolismo , Proteína Quinase C/farmacologia , Ratos , Ratos Sprague-Dawley , Tempo de Reação/efeitos dos fármacos , Fatores de Tempo
10.
J Neurosci ; 35(31): 11118-24, 2015 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-26245972

RESUMO

New memories are thought to be solidified (consolidated) by de novo synthesis of proteins in the period subsequent to learning. This view stems from the observation that protein synthesis inhibitors, such as anisomycin (ANI), administered during this consolidation period cause memory impairments. However, in addition to blocking protein synthesis, intrahippocampal infusions of ANI cause the suppression of evoked and spontaneous neural activity, suggesting that ANI could impair memory expression by simply preventing activity-dependent brain functions. Here, we evaluated the influence of intrahippocampal ANI infusions on allocentric spatial navigation using the Morris water maze, a task well known to require dorsal hippocampal integrity. Young, adult male Sprague Dawley rats were implanted with bilateral dorsal hippocampal cannulae, and their ability to learn the location of a hidden platform was assessed before and following infusions of ANI, TTX, or vehicle (PBS). Before infusion, all groups demonstrated normal spatial navigation (training on days 1 and 2), whereas 30 min following infusions (day 3) both the ANI and TTX groups showed significant impairments in allocentric navigation, but not visually cued navigation, when compared with PBS-treated animals. Spatial navigational deficits appeared to resolve on day 4 in the ANI and TTX groups, 24 h following infusion. These results show that ANI and TTX inhibit the on-line function of the dorsal hippocampus in a similar fashion and highlight the importance of neural activity as an intervening factor between molecular and behavioral processes. SIGNIFICANCE STATEMENT: The permanence of memories has long thought to be mediated by the production of new proteins, because protein synthesis inhibitors can block retrieval of recently learned information. However, protein synthesis inhibitors may have additional detrimental effects on neurobiological function. Here we show that anisomycin, a commonly used protein synthesis inhibitor in memory research, impairs on-line brain function in a way similar to an agent that eliminates electrical neural activity. Since disruption of neural activity can also lead to memory loss, it may be that memory permanence is mediated by neural rehearsal following learning.


Assuntos
Anisomicina/farmacologia , Hipocampo/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia , Comportamento Espacial/efeitos dos fármacos , Animais , Masculino , Ratos , Ratos Sprague-Dawley , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/farmacologia
11.
Neuroimage ; 133: 189-206, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26947518

RESUMO

Slow-wave states are characterized by the most global physiological phenomenon in the mammalian brain, the large-amplitude slow oscillation (SO; ~1Hz) composed of alternating states of activity (ON/UP states) and silence (OFF/DOWN states) at the network and single cell levels. The SO is cortically generated and appears as a traveling wave that can propagate across the cortical surface and can invade the hippocampus. This cortical rhythm is thought to be imperative for sleep-dependent memory consolidation, potentially through increased interactions with the hippocampus. The SO is correlated with learning and its presumed enhancement via slow rhythmic electrical field stimulation improves subsequent mnemonic performance. However, the mechanism by which such field stimulation influences the dynamics of ongoing cortico-hippocampal communication is unknown. Here we show - using multi-site recordings in urethane-anesthetized rats - that sinusoidal electrical field stimulation applied to the frontal region of the cerebral cortex creates a platform for improved cortico-hippocampal communication. Moderate-intensity field stimulation entrained hippocampal slow activity (likely by way of the temporoammonic pathway) and also increased sharp-wave ripples, the signature memory replay events of the hippocampus, and further increased cortical spindles. Following cessation of high-intensity stimulation, SO interactions in the cortical-to-hippocampal direction were reduced, while the reversed hippocampal-to-cortical communication at both SO and gamma bandwidths was enhanced. Taken together, these findings suggest that cortical field stimulation may function to boost memory consolidation by strengthening cortico-hippocampal and hippocampo-cortical interplay at multiple nested frequencies in an intensity-dependent fashion.


Assuntos
Ondas Encefálicas/fisiologia , Estimulação Encefálica Profunda/métodos , Lobo Frontal/fisiologia , Hipocampo/fisiologia , Potenciação de Longa Duração/fisiologia , Rede Nervosa/fisiologia , Animais , Feminino , Humanos , Masculino , Vias Neurais/fisiologia , Ratos , Ratos Sprague-Dawley
12.
J Neurosci ; 34(11): 3937-46, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-24623771

RESUMO

Previous work has demonstrated an influence of the respiratory cycle and, more specifically, rhythmic nasal inspiration for the entrainment of slow oscillations in olfactory cortex during ketamine-xylazine anesthesia. This respiratory entrainment has been suggested to occur more broadly during slow-wave states (including sleep) throughout the forebrain, in particular in the frontal and parahippocampal and hippocampal cortices. Using multisite local field potential recording methods and spectral coherence analysis in the rat, we show here that no such broad forebrain coupling takes place during slow-wave activity patterns under either ketamine-xylazine or urethane anesthesia and, furthermore, that it also does not arise during natural slow-wave sleep. Therefore, respiratory-related oscillatory neural activities are likely limited to primary olfactory structures during slow-wave forebrain states.


Assuntos
Hipocampo/fisiologia , Neocórtex/fisiologia , Condutos Olfatórios/fisiologia , Periodicidade , Mecânica Respiratória/fisiologia , Sono/fisiologia , Anestésicos Dissociativos/farmacologia , Anestésicos Intravenosos/farmacologia , Animais , Eletroencefalografia/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipnóticos e Sedativos/farmacologia , Ketamina/farmacologia , Masculino , Condutos Olfatórios/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Mecânica Respiratória/efeitos dos fármacos , Sono/efeitos dos fármacos , Uretana/farmacologia , Xilazina/farmacologia
13.
J Physiol ; 593(16): 3673-92, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26010654

RESUMO

KEY POINTS: This study investigates the effects on ventilation of an excitatory stimulus delivered in a spatially and temporally precise manner to the inspiratory oscillator, the preBötzinger complex (preBötC). We used an adeno-associated virus expressing channelrhodopsin driven by the synapsin promoter to target the region of the preBötC. Unilateral optogenetic stimulation of preBötC increased respiratory rate, minute ventilation and increased inspiratory modulated genioglossus muscle activity. Unilateral optogenetic stimulation of preBötC consistently entrained respiratory rate up to 180 breaths min(-1) both in presence of ongoing respiratory activity and in absence of inspiratory activity. Unilateral optogenetic stimulation of preBötC induced a strong phase-independent Type 0 respiratory reset, with a short delay in the response of 100 ms. We identified a refractory period of ∼200 ms where unilateral preBötC optogenetic stimulation is not able to initiate the next respiratory event. ABSTRACT: Understanding the sites and mechanisms underlying respiratory rhythmogenesis is of fundamental interest in the field of respiratory neurophysiology. Previous studies demonstrated the necessary and sufficient role of preBötzinger complex (preBötC) in generating inspiratory rhythms in vitro and in vivo. However, the influence of timed activation of the preBötC network in vivo is as yet unknown given the experimental approaches previously used. By unilaterally infecting preBötC neurons using an adeno-associated virus expressing channelrhodopsin we photo-activated the network in order to assess how excitation delivered in a spatially and temporally precise manner to the inspiratory oscillator influences ongoing breathing rhythms and related muscular activity in urethane-anaesthetized rats. We hypothesized that if an excitatory drive is necessary for rhythmogenesis and burst initiation, photo-activation of preBötC not only will increase respiratory rate, but also entrain it over a wide range of frequencies with fast onset, and have little effect on ongoing respiratory rhythm if a stimulus is delivered during inspiration. Stimulation of preBötC neurons consistently increased respiratory rate and entrained respiration up to fourfold baseline conditions. Furthermore, brief pulses of photostimulation delivered at random phases between inspiratory events robustly and consistently induced phase-independent (Type 0) respiratory reset and recruited inspiratory muscle activity at very short delays (∼100 ms). A 200 ms refractory period following inspiration was also identified. These data provide strong evidence for a fine control of inspiratory activity in the preBötC and provide further evidence that the preBötC network constitutes the fundamental oscillator of inspiratory rhythms.


Assuntos
Tronco Encefálico/fisiologia , Fenômenos Fisiológicos Respiratórios , Animais , Proteínas de Bactérias/genética , Tronco Encefálico/metabolismo , Channelrhodopsins , Dependovirus/genética , Proteínas Luminescentes/genética , Neurônios/metabolismo , Optogenética , Estimulação Luminosa , Ratos Sprague-Dawley , Sinapsinas/genética
15.
Hippocampus ; 24(11): 1308-16, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24910137

RESUMO

Although hippocampal function is typically described in terms of memory, recent evidence suggests a differentiation along its dorsal/ventral axis, with dorsal regions serving memory and ventral regions serving emotion. While long-term memory is thought to be dependent on de novo protein synthesis because it is blocked by translational inhibitors such as anisomycin (ANI), online (moment-to-moment) functions of the hippocampus (such as unconditioned emotional responding) should not be sensitive to such manipulations since they are unlikely to involve neuroplasticity. However, ANI has recently been shown to suppress neural activity which suggests (1) that protein synthesis is critical for neural function and (2) that paradigms using ANI are confounded by its inactivating effects. We tested this idea using a neurobehavioral assay which compared the influence of intrahippocampal infusions of ANI at dorsal and ventral sites on unconditioned emotional behavior of rats. We show that ANI infusions in ventral, but not dorsal, hippocampus produced a suppression of anxiety-related responses in two well-established rodent tests: the elevated plus maze and shock-probe burying tests. These results are similar to those previously observed when ventral hippocampal activity is directly suppressed (e.g., by using sodium channel blockers). The present study offers compelling behavioral evidence for the proposal that ANI adversely affects ongoing neural function and therefore its influence is not simply limited to impairing the consolidation of long-term memories


Assuntos
Anisomicina/farmacologia , Ansiolíticos/farmacologia , Ansiedade/tratamento farmacológico , Ansiedade/fisiopatologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Animais , Ansiedade/patologia , Cateteres de Demora , Eletrochoque , Comportamento Exploratório/efeitos dos fármacos , Comportamento Exploratório/fisiologia , Hipocampo/patologia , Masculino , Testes Neuropsicológicos , Fotomicrografia , Inibidores da Síntese de Proteínas/farmacologia , Ratos Sprague-Dawley
16.
Elife ; 132024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39017665

RESUMO

The lateral parafacial area (pFL) is a crucial region involved in respiratory control, particularly in generating active expiration through an expiratory oscillatory network. Active expiration involves rhythmic abdominal (ABD) muscle contractions during late-expiration, increasing ventilation during elevated respiratory demands. The precise anatomical location of the expiratory oscillator within the ventral medulla's rostro-caudal axis is debated. While some studies point to the caudal tip of the facial nucleus (VIIc) as the oscillator's core, others suggest more rostral areas. Our study employed bicuculline (a γ-aminobutyric acid type A [GABA-A] receptor antagonist) injections at various pFL sites (-0.2 mm to +0.8 mm from VIIc) to investigate the impact of GABAergic disinhibition on respiration. These injections consistently elicited ABD recruitment, but the response strength varied along the rostro-caudal zone. Remarkably, the most robust and enduring changes in tidal volume, minute ventilation, and combined respiratory responses occurred at more rostral pFL locations (+0.6/+0.8 mm from VIIc). Multivariate analysis of the respiratory cycle further differentiated between locations, revealing the core site for active expiration generation with this experimental approach. Our study advances our understanding of neural mechanisms governing active expiration and emphasizes the significance of investigating the rostral pFL region.


Assuntos
Bicuculina , Expiração , Bicuculina/farmacologia , Bicuculina/administração & dosagem , Animais , Expiração/fisiologia , Masculino , Respiração/efeitos dos fármacos , Bulbo/fisiologia , Bulbo/efeitos dos fármacos , Antagonistas de Receptores de GABA-A/farmacologia , Antagonistas de Receptores de GABA-A/administração & dosagem
17.
J Neurosci ; 32(7): 2377-87, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22396412

RESUMO

Early in their formation, memories are thought to be labile, requiring a process called consolidation to give them near-permanent stability. Evidence for consolidation as an active and biologically separate mnemonic process has been established through posttraining manipulations of the brain that promote or disrupt subsequent retrieval. Consolidation is thought to be ultimately mediated via protein synthesis since translational inhibitors such as anisomycin disrupt subsequent memory when administered in a critical time window just following initial learning. However, when applied intracerebrally, they may induce additional neural disturbances. Here, we report that intrahippocampal microinfusions of anisomycin in urethane-anesthetized rats at dosages previously used in memory consolidation studies strongly suppressed (and in some cases abolished) spontaneous and evoked local field potentials (and associated extracellular current flow) as well as multiunit activity. These effects were not coupled to the production of pathological electrographic activity nor were they due to cell death. However, the amount of suppression was correlated with the degree of protein synthesis inhibition as measured by autoradiography and was also observed with cycloheximide, another translational inhibitor. Our results suggest that (1) the amnestic effects of protein synthesis inhibitors are confounded by neural silencing and that (2) intact protein synthesis is crucial for neural signaling itself.


Assuntos
Anisomicina/administração & dosagem , Hipocampo/fisiologia , Inibição Neural/fisiologia , Neurônios/fisiologia , Biossíntese de Proteínas/fisiologia , Inibidores da Síntese de Proteínas/administração & dosagem , Animais , Antibacterianos/administração & dosagem , Potenciais Evocados/efeitos dos fármacos , Potenciais Evocados/fisiologia , Hipocampo/efeitos dos fármacos , Injeções Intraventriculares , Masculino , Inibição Neural/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
18.
J Neurosci ; 32(33): 11259-70, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22895710

RESUMO

Respiratory activity is most fragile during sleep, in particular during paradoxical [or rapid eye movement (REM)] sleep and sleep state transitions. Rats are commonly used to study respiratory neuromodulation, but rodent sleep is characterized by a highly fragmented sleep pattern, thus making it very challenging to examine different sleep states and potential pharmacological manipulations within them. Sleep-like brain-state alternations occur in rats under urethane anesthesia and may be an effective and efficient model for sleep itself. The present study assessed state-dependent changes in breathing and respiratory muscle modulation under urethane anesthesia to determine their similarity to those occurring during natural sleep. Rats were anesthetized with urethane and respiratory airflow, as well as electromyographic activity in respiratory muscles were recorded in combination with local field potentials in neocortex and hippocampus to determine how breathing pattern and muscle activity are modulated with brain state. Measurements were made in normoxic, hypoxic, and hypercapnic conditions. Results were compared with recordings made from rats during natural sleep. Brain-state alternations under urethane anesthesia were closely correlated with changes in breathing rate and variability and with modulation of respiratory muscle tone. These changes closely mimicked those observed in natural sleep. Of great interest was that, during both REM and REM-like states, genioglossus muscle activity was strongly depressed and abdominal muscle activity showed potent expiratory modulation. We demonstrate that, in urethane-anesthetized rats, respiratory airflow and muscle activity are closely correlated with brain-state transitions and parallel those shown in natural sleep, providing a useful model to systematically study sleep-related changes in respiratory control.


Assuntos
Anestésicos Intravenosos/farmacologia , Ondas Encefálicas/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Respiração/efeitos dos fármacos , Fases do Sono/efeitos dos fármacos , Uretana/farmacologia , Músculos Abdominais/efeitos dos fármacos , Músculos Abdominais/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Encéfalo/fisiologia , Ondas Encefálicas/fisiologia , Eletroencefalografia , Eletromiografia , Hipercapnia/induzido quimicamente , Hipercapnia/fisiopatologia , Hipóxia/fisiopatologia , Masculino , Ratos , Ratos Sprague-Dawley , Análise Espectral , Volume de Ventilação Pulmonar/efeitos dos fármacos , Vigília/efeitos dos fármacos , Vigília/fisiologia
19.
Neuroimage ; 83: 782-94, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23876244

RESUMO

The neocortical slow oscillation (SO; ~1Hz) of non-REM sleep and anesthesia reflects synchronized network activity composed of alternating active and silent (ON/OFF) phases at the local network and cellular level. The SO itself shows self-organized spatiotemporal dynamics as it appears to originate at unique foci on each cycle and then propagates across the cortical surface. During sleep, this rhythm is relevant for neuroplastic processes mediating memory consolidation especially since its enhancement by slow, rhythmic electrical fields improves subsequent recall. However, the neurobiological mechanism by which spontaneous or enhanced SO activity might operate on memory traces is unknown. Here we show a series of original results, using cycle to cycle tracking across multiple neocortical sites in urethane anesthetized rats: The spontaneous spatiotemporal dynamics of the SO are complex, showing interfering propagation patterns in the anterior-to-posterior plane. These patterns compete for expression and tend to alternate following phase resets that take place during the silent OFF phase of the SO. Applying sinusoidal electrical field stimulation to the anterior pole of the cerebral cortex progressively entrained local field, gamma, and multi-unit activity at all sites, while disrupting the coordination of endogenous SO activity. Field stimulation also biased propagation in the anterior-to-posterior direction and more notably, enhanced the long-range gamma synchrony between cortical regions. These results are the first to show that changes to slow wave dynamics cause enhancements in high frequency cortico-cortical communication and provide mechanistic clues into how the SO is relevant for sleep-dependent memory consolidation.


Assuntos
Anestésicos Intravenosos/farmacologia , Memória/fisiologia , Neocórtex/fisiologia , Sono/fisiologia , Uretana/farmacologia , Animais , Eletroencefalografia , Masculino , Neocórtex/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
20.
Hippocampus ; 23(4): 278-86, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23280856

RESUMO

Hippocampal theta rhythm has been associated with a number of behavioral processes, including learning and memory, spatial behavior, sensorimotor integration and affective responses. Suppression of hippocampal theta frequency has been shown to be a reliable neurophysiological signature of anxiolytic drug action in tests using known anxiolytic drugs (i.e., correlational evidence), but only one study to date (Yeung et al. (2012) Neuropharmacology 62:155-160) has shown that a drug with no known effect on either hippocampal theta or anxiety can in fact separately suppress hippocampal theta and anxiety in behavioral tests (i.e., prima facie evidence). Here, we attempt a further critical test of the hippocampal theta model by performing intrahippocampal administrations of the Ih blocker ZD7288, which is known to disrupt theta frequency subthreshold oscillations and resonance at the membrane level but is not known to have anxiolytic action. Intrahippocampal microinfusions of ZD7288 at high (15 µg), but not low (1 µg) doses slowed brainstem-evoked hippocampal theta responses in the urethane anesthetized rat, and more importantly, promoted anxiolytic action in freely behaving rats in the elevated plus maze. Taken together with our previous demonstration, these data provide converging, prima facie evidence of the validity of the theta suppression model.


Assuntos
Ansiolíticos/farmacologia , Hipocampo/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Pirimidinas/farmacologia , Ritmo Teta/efeitos dos fármacos , Animais , Diazepam/farmacologia , Relação Dose-Resposta a Droga , Estimulação Elétrica , Eletroencefalografia , Análise de Fourier , Hipocampo/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA