RESUMO
PURPOSE: To compare the diagnostic performance of different reconstruction algorithms of single-source dual-energy computed tomography (DECT) for the detection of bone marrow lesions (BML) in patients with vertebral compression fracture using MRI as the standard of reference. MATERIAL AND METHODS: Seventeen patients with an age over 50 who underwent single-source DECT of the spine were included. The raw data (RD) were reconstructed using filtered back-projection (FBP) and iterative reconstruction (IR) with three iteration levels (IR1-IR3). Bone marrow images were generated using a three-material decomposition (3MD) and a two-material decomposition (2MD) algorithm and an RD-based approach. Three blinded readers scored the images for image quality and the presence of bone marrow lesions (BML). Only vertebrae with height loss were included. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated. The different reconstructions were compared using Dunn's multiple comparison test. RESULTS: Thirty-nine vertebrae were included. IR(1-3) showed superior sensitivity (87.5%) compared to FBP (75%) using 3MD but was comparable to RD (83.3%). All 2MD images were inferior (sensitivity < 38%). The image quality score was significantly higher for 3MD-IR(1-3) compared to 3MD-FBP (p < 0.0001) and all 2MD data sets (p < 0.03). This pattern was also supported by the SNR and CNR measurements. RD showed no significant improvement compared to IR. CONCLUSION: The image quality of bone marrow images acquired with DECT can be improved by using IR compared with FBP. RD-based reconstruction does not offer significant improvement over image data-based reconstruction. 2MD algorithms are not suitable for BML detection.
Assuntos
Algoritmos , Doenças da Medula Óssea/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Idoso , Idoso de 80 Anos ou mais , Medula Óssea/diagnóstico por imagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Imagem Radiográfica a Partir de Emissão de Duplo Fóton , Reprodutibilidade dos Testes , Estudos RetrospectivosRESUMO
Magnetic resonance imaging (MRI) is degraded by metal-implant-induced artifacts when used for the diagnostic assessment of vertebral compression fractures in patients with instrumented spinal fusion. Dual-energy computed tomography (DECT) offers a promising supplementary imaging tool in these patients. This case report describes an 85-year-old woman who presented with a suspected acute vertebral fracture after long posterior lumbar interbody fusion. This is the first report of a vertebral fracture that showed bone marrow edema on DECT; however, edema was missed by an MRI STIR sequence owing to metal artifacts. Bone marrow assessment using DECT is less susceptible to metal artifacts than MRI, resulting in improved visualization of vertebral edema in the vicinity of fused vertebral bodies.
Assuntos
Fraturas por Compressão/diagnóstico por imagem , Vértebras Lombares/diagnóstico por imagem , Fraturas da Coluna Vertebral/diagnóstico por imagem , Fusão Vertebral , Idoso de 80 Anos ou mais , Feminino , Humanos , Vértebras Lombares/patologia , Imageamento por Ressonância Magnética , Tomografia Computadorizada por Raios XRESUMO
Differential diagnostics of arthritides is challenging even for experienced radiologists. Nevertheless, there are simple signs that can give important clues to make a diagnosis. Close cooperation with the attending clinicians is essential to get the most from imaging studies and to provide relevant information for patient management and therapy.
Assuntos
Artrite Reumatoide/diagnóstico , Artrografia/métodos , Diagnóstico por Imagem/métodos , Aumento da Imagem/métodos , Articulações/patologia , HumanosRESUMO
OBJECTIVES: Dual-energy computed tomography (DECT) is a recent development for detecting bone marrow edema (BME) in patients with vertebral compression fractures. The aim of this pilot study was to determine the reliability of single-source DECT in detecting vertebral BME using magnetic resonance imaging (MRI) as standard of reference. MATERIALS AND METHODS: Nine patients with radiographic thoracic or lumbar vertebral compression fractures underwent both, DECT on a 320-row single-source scanner and 1.5T MRI. Virtual non-calcium (VNC) images were reconstructed from the DECT volume datasets. Three blinded readers independently scored images for the presence of BME. Only vertebrae with loss of height in radiography (target vertebrae) were included in the analysis. A vertebra was counted as positive if two readers agreed on the presence of BME. Cohen's kappa was calculated for interrater comparison. Intervertebral ratios of target and the reference vertebra were compared for CT attenuation and MR signal intensity in a reference vertebra using Spearman correlation. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated. RESULTS: Fourteen target vertebrae with a radiographic height loss were identified; eight of them showed BME on MRI, while DECT identified BME in 7 instances. There were no false positive virtual non-calcium images, resulting in a sensitivity of 0.88 (0.75-1.0 among all readers) and specificity of 1.0 (0.81-1.0). Interrater agreement was inferior for DECT (κ=0.63-0.89) compared to MRI (κ=0.9-1.0). Intervertebral ratio in VNC images strongly correlated with short-tau inversion recovery (r=0.87) and inversely with T1 (-0.89). SNR (0.2+/- 0.2 in VNC and 16.7+/- 7.3 in STIR) and CNR (0.2+/- 0.3 and 7.1+/- 6.3) values were inferior in VNC. CONCLUSIONS: Detecting BME with single-source DECT is feasible and allows detection of vertebral compression fractures with reasonably high sensitivity and specificity. However, image quality of VNC reconstructions has to be improved to achieve better interrater agreement. Nonetheless, DECT might accelerate the diagnostic work-flow in patients with vertebral compression fractures in the future and reduce the number of additional MRI examinations.