Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
PLoS Genet ; 18(2): e1010067, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35192612

RESUMO

Chondroitin/dermatan sulfate (CS/DS) proteoglycans are indispensable for animal development and homeostasis but the large number of enzymes involved in their biosynthesis have made CS/DS function a challenging problem to study genetically. In our study, we generated loss-of-function alleles in zebrafish genes encoding CS/DS biosynthetic enzymes and characterized the effect on development in single and double mutants. Homozygous mutants in chsy1, csgalnact1a, csgalnat2, chpfa, ust and chst7, respectively, develop to adults. However, csgalnact1a-/- fish develop distinct craniofacial defects while the chsy1-/- skeletal phenotype is milder and the remaining mutants display no gross morphological abnormalities. These results suggest a high redundancy for the CS/DS biosynthetic enzymes and to further reduce CS/DS biosynthesis we combined mutant alleles. The craniofacial phenotype is further enhanced in csgalnact1a-/-;chsy1-/- adults and csgalnact1a-/-;csgalnact2-/- larvae. While csgalnact1a-/-;csgalnact2-/- was the most affected allele combination in our study, CS/DS is still not completely abolished. Transcriptome analysis of chsy1-/-, csgalnact1a-/- and csgalnact1a-/-;csgalnact2-/- larvae revealed that the expression had changed in a similar way in the three mutant lines but no differential expression was found in any of fifty GAG biosynthesis enzymes identified. Thus, zebrafish larvae do not increase transcription of GAG biosynthesis genes as a consequence of decreased CS/DS biosynthesis. The new zebrafish lines develop phenotypes similar to clinical characteristics of several human congenital disorders making the mutants potentially useful to study disease mechanisms and treatment.


Assuntos
Dermatan Sulfato , Peixe-Zebra , Animais , Sulfatos de Condroitina/metabolismo , Dermatan Sulfato/genética , Dermatan Sulfato/metabolismo , Glicosiltransferases/genética , Fenótipo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
2.
Glycobiology ; 32(6): 518-528, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35137078

RESUMO

NDST1 (glucosaminyl N-deacetylase/N-sulfotransferase) is a key enzyme in heparan sulfate (HS) biosynthesis, where it is responsible for HS N-deacetylation and N-sulfation. In addition to the full length human enzyme of 882 amino acids, here designated NDST1A, a shorter form containing 825 amino acids (NDST1B) is synthesized after alternative splicing of the NDST1 mRNA. NDST1B is mostly expressed at a low level, but increased amounts are seen in several types of cancer where it is associated with shorter survival. In this study, we aimed at characterizing the enzymatic properties of NDST1B and its effect on HS biosynthesis. Purified recombinant NDST1B lacked both N-deacetylase and N-sulfotransferase activities. Interestingly, HEK293 cells overexpressing NDST1B synthesized HS with reduced sulfation and altered domain structure. Fluorescence resonance energy transfer-microscopy demonstrated that both NDST1A and NDST1B had the capacity to interact with the HS copolymerase subunits EXT1 and EXT2 and also to form NDST1A/NDST1B dimers. Since lysates from cells overexpressing NDST1B contained less NDST enzyme activity than control cells, we suggest that NDST1B works in a dominant negative manner, tentatively by replacing the active endogenous NDST1 in the enzyme complexes taking part in biosynthesis.


Assuntos
Heparitina Sulfato , Sulfotransferases , Aminoácidos/genética , Células HEK293 , Heparitina Sulfato/química , Humanos , Mutação , Sulfotransferases/metabolismo
3.
J Biol Chem ; 293(1): 379-389, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29138239

RESUMO

Chondroitin sulfate proteoglycans (CSPGs) are important structural components of connective tissues in essentially all metazoan organisms. In vertebrates, CSPGs are involved also in more specialized processes such as neurogenesis and growth factor signaling. In invertebrates, however, knowledge of CSPGs core proteins and proteoglycan-related functions is relatively limited, even for Caenorhabditis elegans. This nematode produces large amounts of non-sulfated chondroitin in addition to low-sulfated chondroitin sulfate chains. So far, only nine core proteins (CPGs) have been identified, some of which have been shown to be involved in extracellular matrix formation. We recently introduced a protocol to characterize proteoglycan core proteins by identifying CS-glycopeptides with a combination of biochemical enrichment, enzymatic digestion, and nano-scale liquid chromatography MS/MS analysis. Here, we have used this protocol to map the chondroitin glycoproteome in C. elegans, resulting in the identification of 15 novel CPG proteins in addition to the nine previously established. Three of the newly identified CPGs displayed homology to vertebrate proteins. Bioinformatics analysis of the primary protein sequences revealed that the CPG proteins altogether contained 19 unique functional domains, including Kunitz and endostatin domains, suggesting direct involvement in protease inhibition and axonal migration, respectively. The analysis of the core protein domain organization revealed that all chondroitin attachment sites are located in unstructured regions. Our results suggest that CPGs display a much greater functional and structural heterogeneity than previously appreciated and indicate that specialized proteoglycan-mediated functions evolved early in metazoan evolution.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Proteoglicanas de Sulfatos de Condroitina/química , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteoglicanas de Sulfatos de Condroitina/isolamento & purificação , Sulfatos de Condroitina/metabolismo , Cromatografia em Gel/métodos , Glicopeptídeos/metabolismo , Proteoglicanas/metabolismo , Espectrometria de Massas em Tandem/métodos
4.
J Biol Chem ; 291(36): 18600-18607, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27387504

RESUMO

Analysis of heparan sulfate synthesized by HEK 293 cells overexpressing murine NDST1 and/or NDST2 demonstrated that the amount of heparan sulfate was increased in NDST2- but not in NDST1-overexpressing cells. Altered transcript expression of genes encoding other biosynthetic enzymes or proteoglycan core proteins could not account for the observed changes. However, the role of NDST2 in regulating the amount of heparan sulfate synthesized was confirmed by analyzing heparan sulfate content in tissues isolated from Ndst2(-/-) mice, which contained reduced levels of the polysaccharide. Detailed disaccharide composition analysis showed no major structural difference between heparan sulfate from control and Ndst2(-/-) tissues, with the exception of heparan sulfate from spleen where the relative amount of trisulfated disaccharides was lowered in the absence of NDST2. In vivo transcript expression levels of the heparan sulfate-polymerizing enzymes Ext1 and Ext2 were also largely unaffected by NDST2 levels, pointing to a mode of regulation other than increased gene transcription. Size estimation of heparan sulfate polysaccharide chains indicated that increased chain lengths in NDST2-overexpressing cells alone could explain the increased heparan sulfate content. A model is discussed where NDST2-specific substrate modification stimulates elongation resulting in increased heparan sulfate chain length.


Assuntos
Amidoidrolases/biossíntese , Regulação Enzimológica da Expressão Gênica/fisiologia , Heparitina Sulfato/biossíntese , Modelos Biológicos , Sulfotransferases/biossíntese , Transcrição Gênica/fisiologia , Amidoidrolases/genética , Animais , Células HEK293 , Heparitina Sulfato/genética , Humanos , Camundongos , Camundongos Knockout , N-Acetilglucosaminiltransferases/biossíntese , N-Acetilglucosaminiltransferases/genética , Sulfotransferases/genética
5.
Biochem Biophys Res Commun ; 450(1): 598-603, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-24928386

RESUMO

Glycosaminoglycans (GAGs) are linear polysaccharides, consisting of repeated disaccharide units, attached to core proteins in all multicellular organisms. Chondroitin sulfate (CS) and dermatan sulfate (DS) constitute a subgroup of sulfated GAGs for which the degree of sulfation varies between species and tissues. One major goal in GAG characterization is to correlate structure to function. A common approach is to exhaustively degrade the GAG chains and thereafter determine the amount of component disaccharide units. In large-scale studies, there is a need for high-throughput screening methods since existing methods are either very time- or samples consuming. Here, we present a new strategy applying MALDI-TOF MS in positive ion mode for semi-qualitative and quantitative analysis of CS/DS derived disaccharide units. Only a few picomoles of sample are required per analysis and 10 samples can be analyzed in 25 min, which makes this approach an attractive alternative to many established assay methods. The total CS/DS concentration in 19 samples derived from Caenorhabditis elegans and mammalian tissues and cells was determined. The obtained results were well in accordance with concentrations determined by a standard liquid chromatography-based method, demonstrating the applicability of the method for samples from various biological matrices containing CS/DS of different sulfation degrees.


Assuntos
Glicosaminoglicanos/análise , Glicosaminoglicanos/química , Robótica/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Sulfatos
6.
J Biol Chem ; 286(26): 23608-19, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21572042

RESUMO

The fly morphogen Hedgehog (Hh) and its mammalian orthologs, Sonic, Indian, and Desert hedgehog, are secreted signaling molecules that mediate tissue patterning during embryogenesis and function in tissue homeostasis and regeneration in the adult. The function of all Hh family members is regulated at the levels of morphogen multimerization on the surface of producing cells, multimer release, multimer diffusion to target cells, and signal reception. These mechanisms are all known to depend on interactions of positively charged Hh amino acids (the Cardin-Weintraub (CW) motif) with negatively charged heparan sulfate (HS) glycosaminoglycan chains. However, a precise mechanistic understanding of these interactions is still lacking. In this work, we characterized ionic HS interactions of multimeric Sonic hedgehog (called ShhNp) as well as mutant forms lacking one or more CW residues. We found that deletion of all five CW residues as well as site-directed mutagenesis of CW residues Lys(33), Arg(35), and Lys(39) (mouse nomenclature) abolished HS binding. In contrast, CW residues Arg(34) and Lys(38) did not contribute to HS binding. Analysis and validation of Shh crystal lattice contacts provided an explanation for this finding. We demonstrate that CW residues Arg(34) and Lys(38) make contact with an acidic groove on the adjacent molecule in the multimer, suggesting a new function of these residues in ShhNp multimerization rather than HS binding. Therefore, the recombinant monomeric morphogen (called ShhN) differs in CW-dependent HS binding and biological activity from physiologically relevant ShhNp multimers, providing new explanations for functional differences observed between ShhN and ShhNp.


Assuntos
Proteínas Hedgehog/química , Proteínas Hedgehog/metabolismo , Multimerização Proteica/fisiologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Linhagem Celular , Cristalografia por Raios X , Proteínas Hedgehog/genética , Humanos , Camundongos , Estrutura Quaternária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Deleção de Sequência
7.
Methods Mol Biol ; 2303: 139-150, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34626376

RESUMO

Heparan sulfate proteoglycans are important modulators of cellular processes where the negatively charged polysaccharide chains interact with target proteins. The sulfation pattern of the heparan sulfate chains will determine which proteins will bind and the affinity of the interactions. The N-deacetylase/N-sulfotransferase (NDST) enzymes are of key importance during heparan sulfate biosynthesis when the sulfation pattern is determined. In this chapter, metabolic labeling of heparan sulfate with [35S]sulfate or [3H]glucosamine in cell cultures is described, in addition to characterization of polysaccharide chain length and degree of N-sulfation. Methods to measure NDST enzyme activity are also presented.


Assuntos
Heparitina Sulfato/química , Antígenos de Grupos Sanguíneos , Fenômenos Químicos , Sulfatos , Sulfotransferases
8.
J Biol Chem ; 284(47): 32562-71, 2009 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-19801637

RESUMO

Sonic hedgehog (Shh) signaling plays major roles in embryonic development and has also been associated with the progression of certain cancers. Here, Shh family members act directly as long range morphogens, and their ability to do so has been linked to the formation of freely diffusible multimers from the lipidated, cell-tethered monomer (ShhNp). In this work we demonstrate that the multimeric morphogen secreted from endogenous sources, such as mouse embryos and primary chick chondrocytes, consists of oligomeric substructures that are "undisruptable" by boiling, denaturants, and reducing agents. Undisruptable (UD) morphogen oligomers vary in molecular weight and possess elevated biological activity if compared with recombinant Sonic hedgehog (ShhN). However, ShhN can also undergo UD oligomerization via a heparan sulfate (HS)-dependent mechanism in vitro, and HS isolated from different sources differs in its ability to mediate UD oligomer formation. Moreover, site-directed mutagenesis of conserved ShhN glutamine residues abolishes UD oligomerization, and inhibitors directed against transglutaminase (TG) activity strongly decrease the amount of chondrocyte-secreted UD oligomers. These findings reveal an unsuspected ability of the N-terminal hedgehog (Hh) signaling domain to form biologically active, covalently cross-linked oligomers and a novel HS function in this TG-catalyzed process. We suggest that in hypertrophic chondrocytes, HS-assisted, TG-mediated Hh oligomerization modulates signaling via enhanced protein signaling activity.


Assuntos
Proteínas Hedgehog/química , Heparitina Sulfato/química , Transglutaminases/química , Animais , Linhagem Celular Tumoral , Embrião de Galinha , Condrócitos/citologia , Condrócitos/metabolismo , Feminino , Humanos , Camundongos , Mutagênese Sítio-Dirigida , Ligação Proteica , Proteínas/química , Proteínas Recombinantes/química , Transdução de Sinais
9.
Matrix Biol ; 93: 43-59, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32201365

RESUMO

Heparan sulfate (HS) regulates the activity of many signaling molecules critical for the development of endochondral bones. Even so, mice with a genetically altered HS metabolism display a relatively mild skeletal phenotype compared to the defects observed in other tissues and organs pointing to a reduced HS dependency of growth-factor signaling in chondrocytes. To understand this difference, we have investigated the glycosaminoglycan (GAG) composition in two mouse lines that produce either reduced levels of HS (Ext1gt/gt mice) or HS lacking 2-O-sulfation (Hs2st1-/- mice). Analysis by RPIP-HPLC revealed an increased level of sulfated disaccarides not affected by the mutation in both mouse lines indicating that chondrocytes attempt to restore a critical level of sulfation. In addition, in both mutant lines we also detected significantly elevated levels of CS. Size exclusion chromatography further demonstrated that Ext1gt/gt mutants produce more but shorter CS chains, while the CS chains produced by (Hs2st1-/- mice) mutants are of similar length to that of wild type littermates indicating that chondrocytes produce more rather than longer CS chains. Expression analysis revealed an upregulation of aggrecan, which likely carries most of the additionally produced CS. Together the results of this study demonstrate for the first time that not only a reduced HS synthesis but also an altered HS structure leads to increased levels of CS in mammalian tissues. Furthermore, as chondrocytes produce 100-fold more CS than HS the increased CS levels point to an active, precursor-independent mechanism that senses the quality of HS in a vast excess of CS. Interestingly, reducing the level of cell surface CS by chondroitinase treatment leads to reduced Bmp2 induced Smad1/5/9 phosphorylation. In addition, Erk phosphorylation is increased independent of Fgf18 treatment indicating that both, HS and CS, affect growth factor signaling in chondrocytes in distinct manners.


Assuntos
Condrócitos/citologia , Sulfatos de Condroitina/metabolismo , Heparitina Sulfato/metabolismo , N-Acetilglucosaminiltransferases/genética , Sulfotransferases/genética , Animais , Proliferação de Células , Células Cultivadas , Condrócitos/metabolismo , Heparitina Sulfato/química , Humanos , Camundongos , Camundongos Transgênicos , Mutação , Fosforilação , Cultura Primária de Células , Transdução de Sinais
10.
Bio Protoc ; 7(15): e2437, 2017 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34541157

RESUMO

The nematode Caenorhabditis elegans is a popular model organism for studies of developmental biology, neurology, ageing and other fields of basic research. Because many developmental processes are regulated by glycosaminoglyans (GAGs) on cell surfaces and in the extracellular matrix, methods to isolate and analyze C. elegans GAGs are needed. Such methods have previously been optimized for other species such as mice and zebrafish. After modifying existing purification protocols, we could recently show that the nematodes also produce chondroitin sulfate, in addition to heparan sulfate, thus challenging the view that only non-sulfated chondroitin was synthesized by C. elegans. We here present our protocol adapted for C. elegans. Since the purification strategy involves separation of non-sulfated and sulfated GAGs, it may also be useful for other applications where this approach could be advantageous.

11.
Sci Rep ; 6: 34662, 2016 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-27703236

RESUMO

Proteoglycans are proteins that carry sulfated glycosaminoglycans (GAGs). They help form and maintain morphogen gradients, guiding cell migration and differentiation during animal development. While no sulfated GAGs have been found in marine sponges, chondroitin sulfate (CS) and heparan sulfate (HS) have been identified in Cnidarians, Lophotrocozoans and Ecdysozoans. The general view that nematodes such as Caenorhabditis elegans, which belong to Ecdysozoa, produce HS but only chondroitin without sulfation has therefore been puzzling. We have analyzed GAGs in C. elegans using reversed-phase ion-pairing HPLC, mass spectrometry and immunohistochemistry. Our analyses included wild type C. elegans but also a mutant lacking two HS sulfotransferases (hst-6 hst-2), as we suspected that the altered HS structure could boost CS sulfation. We could indeed detect sulfated CS in both wild type and mutant nematodes. While 4-O-sulfation of galactosamine dominated, we also detected 6-O-sulfated galactosamine residues. Finally, we identified the product of the gene C41C4.1 as a C. elegans CS-sulfotransferase and renamed it chst-1 (CarboHydrate SulfoTransferase) based on loss of CS-4-O-sulfation in a C41C4.1 mutant and in vitro sulfotransferase activity of recombinant C41C4.1 protein. We conclude that C. elegans indeed manufactures CS, making this widely used nematode an interesting model for developmental studies involving CS.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Sulfatos de Condroitina/biossíntese , Mutação , Sulfotransferases/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Sulfatos de Condroitina/genética , Espectrometria de Massas , Sulfotransferases/genética
12.
Matrix Biol ; 49: 82-92, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26116392

RESUMO

One of the key regulators of endochondral ossification is Indian hedgehog (Ihh), which acts as a long-range morphogen in the developing skeletal elements. Previous studies have shown that the distribution and signaling activity of Ihh is regulated by the concentration of the extracellular glycosaminoglycan heparan sulfate (HS). An essential step during biosynthesis of HS is the epimerization of D-glucuronic to L-iduronic acid by the enzyme glucuronyl C5-epimerase (Hsepi or Glce). Here we have investigated chondrocyte differentiation in Glce deficient mice and found increased regions of proliferating chondrocytes accompanied by a delayed onset of hypertrophic differentiation. In addition, we observed increased expression levels of the Ihh target genes Patched1 (Ptch1) and Parathyroid hormone related peptide (Pthrp; Parathyroid hormone like hormone (Pthlh)) indicating elevated Ihh signaling. We further show that Ihh binds with reduced affinity to HS isolated from Glce(-/-) mice. Together our results strongly indicate that not only the level, but also the structure of HS is critical in regulating the distribution and signaling activity of Ihh in chondrocytes.


Assuntos
Carboidratos Epimerases/deficiência , Condrócitos/citologia , Proteínas Hedgehog/metabolismo , Heparitina Sulfato/química , Racemases e Epimerases/deficiência , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Condrócitos/metabolismo , Condrócitos/patologia , Embrião de Mamíferos/citologia , Heparitina Sulfato/metabolismo , Hiperostose/genética , Hiperostose/metabolismo , Camundongos , Transdução de Sinais
13.
Methods Mol Biol ; 1229: 189-200, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25325954

RESUMO

Heparan sulfate proteoglycans are important modulators of cellular processes where the negatively charged polysaccharide chains interact with target proteins. The sulfation pattern of the heparan sulfate chains will determine the proteins that will bind and the affinity of the interactions. The N-deacetylase/N-sulfotransferase (NDST) enzymes are of key importance during heparan sulfate biosynthesis when the sulfation pattern is determined. In this chapter, metabolic labeling of heparan sulfate with [(35)S]sulfate or [(3)H]glucosamine in cell cultures is described, in addition to characterization of polysaccharide chain length and degree of N-sulfation. Methods to measure NDST enzyme activity are also presented.


Assuntos
Heparitina Sulfato/química , Marcação por Isótopo/métodos , Sulfatos/metabolismo , Sulfotransferases/metabolismo , Linhagem Celular , Cromatografia em Gel , Ensaio de Imunoadsorção Enzimática , Heparitina Sulfato/biossíntese , Humanos , Radioisótopos de Enxofre , Trítio
14.
PLoS One ; 10(3): e0121957, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25793894

RESUMO

Chondroitin/dermatan sulfate (CS/DS) proteoglycans consist of unbranched sulfated polysaccharide chains of repeating GalNAc-GlcA/IdoA disaccharide units, attached to serine residues on specific proteins. The CS/DS proteoglycans are abundant in the extracellular matrix where they have essential functions in tissue development and homeostasis. In this report a phylogenetic analysis of vertebrate genes coding for the enzymes that modify CS/DS is presented. We identify single orthologous genes in the zebrafish genome for the sulfotransferases chst7, chst11, chst13, chst14, chst15 and ust and the epimerase dse. In contrast, two copies were found for mammalian sulfotransferases CHST3 and CHST12 and the epimerase DSEL, named chst3a and chst3b, chst12a and chst12b, dsela and dselb, respectively. Expression of CS/DS modification enzymes is spatially and temporally regulated with a large variation between different genes. We found that CS/DS 4-O-sulfotransferases and 6-O-sulfotransferases as well as CS/DS epimerases show a strong and partly overlapping expression, whereas the expression is restricted for enzymes with ability to synthesize di-sulfated disaccharides. A structural analysis further showed that CS/DS sulfation increases during embryonic development mainly due to synthesis of 4-O-sulfated GalNAc while the proportion of 6-O-sulfated GalNAc increases in later developmental stages. Di-sulfated GalNAc synthesized by Chst15 and 2-O-sulfated GlcA/IdoA synthesized by Ust are rare, in accordance with the restricted expression of these enzymes. We also compared CS/DS composition with that of heparan sulfate (HS). Notably, CS/DS biosynthesis in early zebrafish development is more dynamic than HS biosynthesis. Furthermore, HS contains disaccharides with more than one sulfate group, which are virtually absent in CS/DS.


Assuntos
Sulfatos de Condroitina/metabolismo , Dermatan Sulfato/análogos & derivados , Desenvolvimento Embrionário , Sulfotransferases/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Dermatan Sulfato/metabolismo , Heparitina Sulfato/metabolismo , Hibridização In Situ , Filogenia , Fatores de Tempo
15.
Dev Cell ; 20(6): 764-74, 2011 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-21664575

RESUMO

All Hedgehog (Hh) proteins are released from producing cells despite being synthesized as N- and C-terminally lipidated, membrane-tethered molecules. Thus, a cellular mechanism is needed for Hh solubilization. We previously suggested that a disintegrin and metalloprotease (ADAM)-mediated shedding of Sonic hedgehog (ShhNp) from its lipidated N and C termini results in protein solubilization. This finding, however, seemed at odds with the established role of N-terminal palmitoylation for ShhNp signaling activity. We now resolve this paradox by showing that N-palmitoylation of ShhNp N-terminal peptides is required for their proteolytic removal during solubilization. These peptides otherwise block ShhNp zinc coordination sites required for ShhNp binding to its receptor Patched (Ptc), explaining the essential yet indirect role of N-palmitoylation for ShhNp function. We suggest a functional model in which membrane-tethered multimeric ShhNp is at least partially autoinhibited in trans but is processed into fully active, soluble multimers upon palmitoylation-dependent cleavage of inhibitory N-terminal peptides.


Assuntos
Proteínas Hedgehog/química , Proteínas Hedgehog/metabolismo , Palmitatos/farmacologia , Fragmentos de Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Receptores de Superfície Celular/metabolismo , Animais , Anticorpos Monoclonais/farmacologia , Diferenciação Celular , Células Cultivadas , Embrião de Galinha , Condrócitos/citologia , Condrócitos/metabolismo , Cristalografia por Raios X , Proteínas Hedgehog/genética , Humanos , Camundongos , Modelos Moleculares , Células NIH 3T3 , Receptores Patched , Receptor Patched-1 , Fragmentos de Peptídeos/genética , Conformação Proteica , Receptores de Superfície Celular/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais
16.
J Biol Chem ; 284(12): 8013-22, 2009 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-19176481

RESUMO

The ectodomains of numerous proteins are released from cells by matrix metalloproteases to yield soluble intercellular regulators. A disintegrin and metalloprotease (ADAM) family members have often been found to be the responsible "sheddases," ADAM17/tumor necrosis factor-alpha-converting enzyme being its best characterized member. In this work, we show that ShhNp (lipidated and membrane-tethered Sonic hedgehog) is released from Bosc23 cells by metalloprotease-mediated ectodomain shedding, resulting in a soluble and biologically active morphogen. ShhNp shedding is increased by ADAM17 coexpression and cholesterol depletion of cells with methyl-beta-cyclodextrin and is reduced by metalloprotease inhibitors as well as ADAM17 RNA interference. We also show that the amount of shed ShhNp is modulated by extracellular heparan sulfate (HS) and that ShhNp shedding depends on specific HS sulfations. Based on those data, we suggest new roles for metalloproteases, including but not restricted to ADAM17, and for HS-proteoglycans in Hedgehog signaling.


Assuntos
Proteínas ADAM/metabolismo , Proteínas Hedgehog/metabolismo , Heparitina Sulfato/farmacologia , Proteína ADAM17 , Animais , Células CHO , Colesterol/metabolismo , Cricetinae , Cricetulus , Camundongos , beta-Ciclodextrinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA