Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Air Waste Manag Assoc ; 53(5): 586-95, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12774992

RESUMO

A simple data analysis method called the Tracer-Aerosol Gradient Interpretive Technique (TAGIT) is used to attribute particulate S and SO2 at Big Bend National Park in Texas and nearby areas to local and regional sources. Particulate S at Big Bend is of concern because of its effects on atmospheric visibility. The analysis used particulate S, SO2, and perfluorocarbon tracer data from six 6-hr sampling sites in and near Big Bend National Park. The data were collected in support of the Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study; the field portion was conducted from July through October 1999. Perfluorocarbon tracer was released continuously from a tower at Eagle Pass, TX, approximately 25 km northeast of two large coal-fired power plants (Carbon I and II) in Coahuila, Mexico, and approximately 270 km east-southeast of Big Bend National Park. The perfluorocarbon tracer did not properly represent the location of the emissions from the Carbon power plants for individual 6-hr sampling periods and attributed only 3% of the particulate S and 27% of the SO2 at the 6-hr sites in and near Big Bend to sources represented by the tracer. An alternative approach using SO2 to tag "local" sources such as the Carbon plants attributed 10% of the particulate S and 75% of the SO2 at the 6-hr sites to local sources. Based on these two approaches, most of the regional (65-86%) and a small fraction (19-31%) of the local SO2 was converted to particulate S. The analysis implies that substantial reductions in particulate S at Big Bend National Park cannot be achieved by only reducing emissions from the Carbon power plants; reduction of emissions from many sources over a regional area would be necessary.


Assuntos
Poluentes Atmosféricos/análise , Centrais Elétricas , Dióxido de Enxofre/análise , Aerossóis/análise , Carvão Mineral , Monitoramento Ambiental , México , Tamanho da Partícula , Texas
2.
Environ Sci Technol ; 41(20): 6909-13, 2007 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17993127

RESUMO

There are seven cyclic perfluoroalkane compounds, which can be detected in extremely low concentrations, that are used to track mass movement and transfer in a variety of research and practical applications. They are used in leak detection in underground storage and pipelines and in atmospheric transport and diffusion research on local, regional, and continental scales. They are likely to be a used globally for monitoring carbon sequestration in geological formations. The atmospheric background levels of these compounds must be accurately known, and trends in their concentrations determined for these compounds to be effective in monitoring CO2 reservoirs and because there are environmental concerns about their release. Results of measurements of perfluorocarbon background concentrations from two recent field programs are presented, and trends in these values examined using data collected over the last 25 years. The current atmospheric concentrations of these compounds are in the low parts per quadrillion levels, and their annual atmospheric growth rate is less than 1 part per quadrillion per year. The environmental effects of these compounds are examined and found to be negligible at current release rates.


Assuntos
Poluentes Atmosféricos/análise , Atmosfera , Fluorocarbonos/análise , Monitoramento Ambiental , Sensibilidade e Especificidade
3.
Environ Res ; 102(1): 1-8, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16620807

RESUMO

Concentrations of nitrogen dioxide and formaldehyde were determined in a study of 96 homes in Quebec City, Canada, between January and April 2005. In addition, relative humidity, temperature, and air change rates were measured in homes, and housing characteristics were documented through a questionnaire to occupants. Half of the homes had ventilation rates below 7.5 L/s person. Nitrogen dioxide (NO2) and formaldehyde concentrations ranged from 3.3 to 29.1 microg/m3 (geometric mean 8.3 microg/m3) and from 9.6 to 90.0 microg/m3 (geometric mean of 29.5 microg/m3), respectively. The housing characteristics documented in the study explained approximately half of the variance of NO2 and formaldehyde. NO2 concentrations in homes were positively correlated with air change rates (indicating a significant contribution of outdoor sources to indoor levels) and were significantly elevated in homes equipped with gas stoves and, to a lesser extent, in homes with gas heating systems. Formaldehyde concentrations were negatively correlated with air change rates and were significantly elevated in homes heated by electrical systems, in those with new wooden or melamine furniture purchased in the previous 12 months, and in those where painting or varnishing had been done in the sampled room in the previous 12 months. Results did not indicate any significant contribution of indoor combustion sources, including wood-burning appliances, to indoor levels of formaldehyde. These results suggest that formaldehyde concentrations in Quebec City homes are caused primarily by off-gassing, and that increasing air change rates in homes could reduce exposure to this compound. More generally, our findings confirm the influence of housing characteristics on indoor concentrations of NO2 and formaldehyde.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Formaldeído/análise , Habitação , Dióxido de Nitrogênio/análise , Movimentos do Ar , Culinária , Calefação , Humanos , Quebeque , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA