Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 156(6): 064701, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35168342

RESUMO

Water formation is relevant in many technological processes and is also an important model reaction. Although water formation over Pd surfaces is widely studied, questions regarding the active site and the main reaction path (OH* + OH*) or (OH* + H*) are still open. Combining first-principles density functional theory calculations and kinetic Monte Carlo simulations, we find that the reaction rate is dominated by surface steps and point defects over a wide range of conditions. The main reaction path is found to be temperature dependent where the OH* + OH* path dominates at low temperatures, whereas the OH* + H* path is the main path at high temperatures. Steps facilitate the OH* formation, which is the rate limiting step under all conditions. OH* is formed via O* + H* association or OOH* splitting at low temperatures, whereas OH* is exclusively formed via O* + H* association at high temperatures. The results of the first-principles-based kinetic model are in excellent agreement with experimental observations at high and low temperatures as well as different gas-phase compositions.

2.
Chemphyschem ; 21(21): 2407-2410, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-32965758

RESUMO

Density functional theory calculations of atomic and molecular adsorption on (111) and (100) metal surfaces reveal marked surface and structure dependent effects of strain. Adsorption in three-fold hollow sites is found to be destabilized by compressive strain whereas the reversed trend is commonly valid for adsorption in four-fold sites. The effects, which are qualitatively explained using a simple two-orbital model, provide insights on how to modify chemical properties by strain design.

3.
J Chem Theory Comput ; 19(3): 1044-1049, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36652690

RESUMO

Adsorbates on a surface experience lateral interactions that result in a distribution of adsorption energies. The adsorbate-adsorbate interactions are known to affect the kinetics of surface reactions, which motivates efforts to develop models that accurately account for the interactions. Here, we use density functional theory (DFT) calculations combined with Monte Carlo simulations to investigate how the distribution of adsorbates affects adsorption and desorption of CO from Pt(111). We find that the mean of the average adsorption energy determines the adsorption process, whereas the desorption process can be described by the low energy part of the adsorbate stability distribution. The simulated results are in very good agreement with calorimetry and temperature-programmed desorption experiments and provide a guideline of how to include adsorbate-adsorbate interactions in DFT-based mean-field kinetic models.

4.
Nanoscale ; 13(2): 930-938, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33367382

RESUMO

A major aim in the synthesis of nanomaterials is the development of stable materials for high-temperature applications. Although the thermal coarsening of small and active nanocrystals into less active aggregates is universal in material deactivation, the atomic mechanisms governing nanocrystal growth remain elusive. By utilizing colloidally synthesized Pd/SiO2 powder nanocomposites with controlled nanocrystal sizes and spatial arrangements, we unravel the competing contributions of particle coalescence and atomic ripening processes in nanocrystal growth. Through the study of size-controlled nanocrystals, we can uniquely identify the presence of either nanocrystal dimers or smaller nanoclusters, which indicate the relative contributions of these two processes. By controlling and tracking the nanocrystal density, we demonstrate the spatial dependence of nanocrystal coalescence and the spatial independence of Ostwald (atomic) ripening. Overall, we prove that the most significant loss of the nanocrystal surface area is due to high-temperature atomic ripening. This observation is in quantitative agreement with changes in the nanocrystal density produced by simulations of atomic exchange. Using well-defined colloidal materials, we extend our analysis to explain the unusual high-temperature stability of Au/SiO2 materials up to 800 °C.

5.
Nat Catal ; 22019.
Artigo em Inglês | MEDLINE | ID: mdl-32118197

RESUMO

In the high-temperature environments needed to perform catalytic processes, supported precious metal catalysts severely lose their activity over time. Even brief exposure to high temperatures can lead to significant losses in activity, which forces manufacturers to use large amounts of noble metals to ensure effective catalyst function for a required lifetime. Generally, loss of catalytic activity is attributed to nanoparticle sintering, or processes by which larger particles grow at the expense of smaller ones. Here, by independently controlling particle size and particle loading using colloidal nanocrystals, we reveal the opposite process as a novel deactivation mechanism: nanoparticles rapidly lose activity by high-temperature nanoparticle decomposition into inactive single atoms. This deactivation route is remarkably fast, leading to severe loss of activity in as little as ten minutes. Importantly, this deactivation pathway is strongly dependent on particle density and concentration of support defect sites. A quantitative statistical model explains how for certain reactions, higher particle densities can lead to more stable catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA