RESUMO
BACKGROUND: The pathogenic fungus Candida albicans is capable of a morphological transition from a unicellular budding yeast to a filamentous form. Extensive filamentous growth leads to the formation of mycelia displaying hyphae with branches and lateral buds. Hyphae have been observed to adhere to and invade host tissues more readily than the yeast form, suggesting that filamentous growth may contribute to the virulence of this major human pathogen. A molecular and genetic understanding of the potential role of morphological switching in the pathogenicity of C. albicans would be of significant benefit in view of the increasing incidence of candidiasis. RESULTS: The CaCLA4 gene of C. albicans was cloned by functional complementation of the growth defect of cells of the budding yeast Saccharomyces cerevisiae deleted for the STE20 gene and the CLA4 gene. CaCLA4 encodes a member of the Ste20p family of serine/threonine protein kinases and is characterized by a pleckstrin homology domain and a Cdc42p-binding domain in its amino-terminal non-catalytic region. Deletion of both alleles of CaCLA4 in C. albicans caused defects in hyphal formation in vitro, in both synthetic liquid and solid media, and in vivo in a mouse model for systemic candidiasis. The gene deletions reduced colonization of the kidneys in infected mice and suppressed C. albicans virulence in the mouse model. CONCLUSIONS: Our results demonstrate that the function of the CaCla4p protein kinase is essential for virulence and morphological switching of C. albicans in a mouse model. Thus, hyphal formation of C. albicans mediated by CaCla4p may contribute to the pathogenicity of this dimorphic fungus, suggesting that regulators of morphological switching may be useful targets for antifungal drugs.
Assuntos
Candida albicans/enzimologia , Candida albicans/patogenicidade , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas de Saccharomyces cerevisiae , Sequência de Aminoácidos , Animais , Candida albicans/crescimento & desenvolvimento , Clonagem Molecular , Deleção de Genes , Genes Fúngicos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , MAP Quinase Quinase Quinases , Camundongos , Dados de Sequência Molecular , Proteínas Serina-Treonina Quinases/genética , Homologia de Sequência de Aminoácidos , VirulênciaRESUMO
The GPA1, STE4, and STE18 genes of Saccharomyces cerevisiae encode the alpha, beta, and gamma subunits, respectively, of a G protein involved in the mating response pathway. We have found that mutations G124D, W136G, W136R, and delta L138 and double mutations W136R L138F and W136G S151C of the Ste4 protein cause constitutive activation of the signaling pathway. The W136R L138F and W136G S151C mutant Ste4 proteins were tested in the two-hybrid protein association assay and found to be defective in association with the Gpa1 protein. A mutation at position E307 of the Gpa1 protein both suppresses the constitutive signaling phenotype of some mutant Ste4 proteins and allows the mutant alpha subunit to physically associate with a specific mutant G beta subunit. The mutation in the Gpa1 protein is adjacent to the hinge, or switch, region that is required for the conformational change which triggers subunit dissociation, but the mutation does not affect the interaction of the alpha subunit with the wild-type beta subunit. Yeast cells constructed to contain only the mutant alpha and beta subunits mate and respond to pheromones, although they exhibit partial induction of the pheromone response pathway. Because the ability of the modified G alpha subunit to suppress the Ste4 mutations is allele specific, it is likely that the residues defined by this analysis play a direct role in G-protein subunit association.
Assuntos
Subunidades alfa de Proteínas de Ligação ao GTP , Subunidades beta da Proteína de Ligação ao GTP , Subunidades gama da Proteína de Ligação ao GTP , Proteínas de Ligação ao GTP/biossíntese , Proteínas de Ligação ao GTP/genética , Genes Fúngicos , Proteínas Heterotriméricas de Ligação ao GTP , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Sequência de Bases , Primers do DNA , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP , Biblioteca Gênica , Hidroxilamina , Hidroxilaminas/toxicidade , Substâncias Macromoleculares , Dados de Sequência Molecular , Mutagênese , Mutagênese Sítio-Dirigida , Plasmídeos , Reação em Cadeia da Polimerase , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de AminoácidosRESUMO
The SCG1 (GPA1), STE4, and STE18 genes of Saccharomyces cerevisiae encode mating-pathway components whose amino acid sequences are similar to those of the alpha, beta, and gamma subunits, respectively, of mammalian G proteins. Genetic evidence suggests that the STE4 and STE18 gene products interact. The mating defects of a set of ste4 mutants were partially suppressed by the overexpression of STE18, and, moreover, a combination of partially defective ste4 and ste18 alleles created a totally sterile phenotype, whereas such synthetic sterility was not observed when the ste18 allele was combined with a weakly sterile ste11 allele. Others have provided genetic evidence consistent with an interaction between the SCG1 (GPA1) and STE4 gene products. We have examined the physical interactions of these subunits by using an in vivo protein association assay. The STE4 and STE18 gene products associated with each other, and this association was disrupted by a mutation in the STE4 gene product whose phenotype was partially suppressed by overexpression of STE18. The STE4 and SCG1 (GPA1) gene products also interacted in the assay, whereas we detected no association of the SCG1 (GPA1) and STE18 gene products.
Assuntos
Subunidades beta da Proteína de Ligação ao GTP , Proteínas de Ligação ao GTP/fisiologia , Proteínas Heterotriméricas de Ligação ao GTP , Peptídeos/fisiologia , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/fisiologia , Sequência de Bases , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Substâncias Macromoleculares , Fator de Acasalamento , Dados de Sequência Molecular , Oligodesoxirribonucleotídeos/química , Reação em Cadeia da Polimerase , Ligação Proteica , Proteínas Recombinantes de Fusão/metabolismoRESUMO
Mitogen-activated protein (MAP) kinases are pivotal components of eukaryotic signaling cascades. Phosphorylation of tyrosine and threonine residues activates MAP kinases, but either dual-specificity or monospecificity phosphatases can inactivate them. The Candida albicans CPP1 gene, a structural member of the VH1 family of dual- specificity phosphatases, was previously cloned by its ability to block the pheromone response MAP kinase cascade in Saccharomyces cerevisiae. Cpp1p inactivated mammalian MAP kinases in vitro and acted as a tyrosine-specific enzyme. In C. albicans a MAP kinase cascade can trigger the transition from the budding yeast form to a more invasive filamentous form. Disruption of the CPP1 gene in C. albicans derepressed the yeast to hyphal transition at ambient temperatures, on solid surfaces. A hyphal growth rate defect under physiological conditions in vitro was also observed and could explain a reduction in virulence associated with reduced fungal burden in the kidneys seen in a systemic mouse model. A hyper-hyphal pathway may thus have some detrimental effects on C. albicans cells. Disruption of the MAP kinase homologue CEK1 suppressed the morphological effects of the CPP1 disruption in C. albicans. The results presented here demonstrate the biological importance of a tyrosine phosphatase in cell-fate decisions and virulence in C. albicans.
Assuntos
Candida albicans/enzimologia , Candida albicans/patogenicidade , Proteína Quinase 3 Ativada por Mitógeno , Mutação/genética , Proteínas Tirosina Fosfatases/metabolismo , Esporos Fúngicos/enzimologia , Esporos Fúngicos/crescimento & desenvolvimento , Sequência de Aminoácidos , Animais , Sítios de Ligação , Candida albicans/genética , Candida albicans/metabolismo , Candidíase/microbiologia , Divisão Celular , Tamanho Celular , Fosfatases de Especificidade Dupla , Feminino , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Deleção de Genes , Rim/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Dados de Sequência Molecular , Fenótipo , Fosforilação , Proteínas Tirosina Fosfatases/química , Proteínas Tirosina Fosfatases/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Alinhamento de Sequência , Esporos Fúngicos/genética , Esporos Fúngicos/patogenicidade , Temperatura , Virulência/genéticaRESUMO
The human fungal pathogen Candida albicans switches from a budding yeast form to a polarized hyphal form in response to various external signals. This morphogenetic switching has been implicated in the development of pathogenicity. We have cloned the CaCDC35 gene encoding C. albicans adenylyl cyclase by functional complementation of the conditional growth defect of Saccharomyces cerevisiae cells with mutations in Ras1p and Ras2p. It has previously been shown that these Ras homologues regulate adenylyl cyclase in yeast. The C. albicans adenylyl cyclase is highly homologous to other fungal adenylyl cyclases but has less sequence similarity with the mammalian enzymes. C. albicans cells deleted for both alleles of CaCDC35 had no detectable cAMP levels, suggesting that this gene encodes the only adenylyl cyclase in C. albicans. The homozygous mutant cells were viable but grew more slowly than wild-type cells and were unable to switch from the yeast to the hyphal form under all environmental conditions that we analyzed in vitro. Moreover, this morphogenetic switch was completely blocked in mutant cells undergoing phagocytosis by macrophages. However, morphogenetic switching was restored by exogenous cAMP. On the basis of epistasis experiments, we propose that CaCdc35p acts downstream of the Ras homologue CaRas1p. These epistasis experiments also suggest that the putative transcription factor Efg1p and components of the hyphal-inducing MAP kinase pathway depend on the function of CaCdc35p in their ability to induce morphogenetic switching. Homozygous cacdc35 Delta cells were unable to establish vaginal infection in a mucosal membrane mouse model and were avirulent in a mouse model for systemic infections. These findings suggest that fungal adenylyl cyclases and other regulators of the cAMP signaling pathway may be useful targets for antifungal drugs.
Assuntos
Adenilil Ciclases/metabolismo , Candida albicans/enzimologia , Transdução de Sinais , Adenilil Ciclases/genética , Adenilil Ciclases/imunologia , Adenilil Ciclases/isolamento & purificação , Animais , Sequência de Bases , Candida albicans/crescimento & desenvolvimento , Candida albicans/imunologia , Candida albicans/patogenicidade , Candidíase/microbiologia , Linhagem Celular , Deleção Cromossômica , Cromossomos Fúngicos , DNA Fúngico , Feminino , Macrófagos/citologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , VirulênciaRESUMO
Proteolytic processing of polyprotein precursors at pairs of basic amino acids is a prerequisite for the generation of bioactive peptide hormones. While the mammalian endoproteases responsible for these cleavages are yet to be identified, this function has been unequivocally assigned in yeast to the product of the KEX-2 gene. To study the molecular mechanisms involved in polyprotein processing, we have transfected the yeast KEX-2 gene into mouse NIH 3T3 fibroblasts and established a new cell line (called 2N-DK) where the KEX-2 endoprotease is permanently expressed. Immunofluorescence studies show that the KEX-2 enzyme is retained within the Golgi of the 2N-DK cells. The evidence for this cellular location is supported by measurement of intracellular and extracellular KEX-2 enzyme activity. In this permanently transfected cell line, KEX-2 activity is exclusively intracellular, in contrast to the situation previously described in transiently infected cell lines, where extracellular KEX-2 activity was detected. Furthermore, infection of 2N-DK cells with a recombinant retrovirus expressing a cDNA coding for porcine proopiomelanocortin (POMC) resulted in the synthesis of POMC and its efficient processing into beta-lipotropin and beta-endorphin, two of its physiologically authentic maturation products. These results suggest that in the fibroblast cell line 2N-DK, proteolytic processing of POMC by KEX-2 endoprotease occurs in the Golgi apparatus.
Assuntos
Fibroblastos/enzimologia , Complexo de Golgi/enzimologia , Pró-Proteína Convertases , Proteínas de Saccharomyces cerevisiae , Serina Endopeptidases/metabolismo , Subtilisinas , Transfecção , Sequência de Aminoácidos , Animais , Linhagem Celular , DNA/genética , Fibroblastos/ultraestrutura , Imunofluorescência , Expressão Gênica , Camundongos , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Pró-Opiomelanocortina/genética , Serina Endopeptidases/genética , Especificidade por Substrato , beta-Endorfina/metabolismo , beta-Lipotropina/metabolismoRESUMO
The construction and characterization of a family of yeast expression vectors is described. They have the following features: plasmid replication and selection (ApR) in Escherichia coli, packaging of single-stranded (ss) DNA upon infection of E. coli with a filamentous helper phage, replication in Saccharomyces cerevisiae based on the 2 mu plasmid origin of replication (ori), selection in yeast by complementation of LEU2 (pVT-L series, size 6.3 kb) or URA3 gene (pVT-U series, size 6.9 kb) and seven unique restriction sites for cloning within an 'expression cassette' which includes the promoter and 3' sequence of the ADH1 gene. The multiple cloning site as well as the ori and intergenic region of the phage f1 have been cloned in two orientations for convenient gene cloning and ssDNA strand selection. As a result any of these eight vectors can be chosen for cloning, expressing genes in yeast, sequencing and mutagenesis without the need for recloning into specialized vectors.
Assuntos
Colífagos/genética , Escherichia coli/genética , Genes Virais , Vetores Genéticos , Saccharomyces cerevisiae/genética , Transcrição Gênica , Sequência de Bases , Replicação do DNA , Enzimas de Restrição do DNA , DNA de Cadeia Simples/genética , Plasmídeos , Replicação ViralRESUMO
We have cloned the Saccharomyces cerevisiae gene coding for the peroxisomal enzyme: fatty acyl-CoA oxidase (POX). The gene (named POX1) is unique in S. cerevisiae and has been identified through homology with the POX4 and POX5 genes of Candida tropicalis. The POX1 gene encodes a 84-kDa POX protein composed of 748 amino acids. The identity between the S. cerevisiae and C. tropicalis enzymes is about 40%, and there is a greater degree of similarity between the N termini than the C termini. A disruption of the POX1 coding sequence diminishes the ability of yeast cells to grow on oleic acid as a sole carbon source. The expression of the POX1 gene is regulated at the level of transcription, and is induced more than 25-fold by the addition of oleic acid to the medium.
Assuntos
Oxirredutases/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Transcrição Gênica/efeitos dos fármacos , Acil-CoA Oxidase , Sequência de Aminoácidos , Sequência de Bases , Candida/genética , Meios de Cultura , Sondas de DNA , DNA Recombinante , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Ácido Oleico , Ácidos Oleicos/farmacologia , RNA Mensageiro/análise , Homologia de Sequência do Ácido NucleicoRESUMO
A 1048-bp gene coding for prepropapain was assembled from chemically synthesized oligodeoxyribonucleotides and cloned into a variety of Escherichia coli expression plasmids. We observed loss of plasmid when the preproP gene was expressed in E. coli either as the native precursor or fused at the C terminus of the first 592 amino acids (aa) of beta-galactosidase (beta Gal). Deletion of the putative 26-aa signal peptide (pre-region) increased plasmid stability. The level of maintenance for the different plasmid constructs correlated with the level of expression detected by immunoblotting. Constitutive expression of the beta Gal-propapain fusion generated insoluble granules in a protease-deficient E. coli host. The fusion protein was easily purified to near homogeneity by differential solubilization of the granules.
Assuntos
Escherichia coli/genética , Regulação da Expressão Gênica , Genes Sintéticos , Papaína/genética , Precursores de Proteínas/genética , Sequência de Aminoácidos , Sequência de Bases , DNA , Dados de Sequência Molecular , Mutação , Papaína/biossíntese , Plasmídeos , Precursores de Proteínas/biossíntese , Sinais Direcionadores de Proteínas/genética , Sinais Direcionadores de Proteínas/fisiologia , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genéticaRESUMO
We have used a genomic library of Candida albicans to transform Saccharomyces cerevisiae and screened for genes that act similarly to dominant negative mutations by interfering with pheromone-mediated cell cycle arrest. Six different plasmids were identified from 2000 transformants; four have been sequenced. One gene (CZF1) encodes a protein with structural motifs characteristic of a transcription factor. A second gene (CCN1) encodes a cyclin homologue, a third (CRL1) encodes a protein with sequence similarity to GTP-binding proteins of the RHO family, and a fourth (CEK1) encodes a putative kinase of the ERK family. Since CEK1 confers a phenotype similar to that of the structurally related S. cerevisiae gene KSS1 but cannot complement a KSS1 defect, it is evident that dominant negative selection can identify proteins that complementation screens would miss. Because dominant negative mutations exert their influence even in wild-type strain backgrounds, this approach should be a general method for the analysis of complex cellular processes in organisms not amenable to direct genetic analysis.
Assuntos
Candida albicans/genética , Ciclo Celular , Proteínas Fúngicas/genética , Genes Fúngicos , Proteína Quinase 3 Ativada por Mitógeno , Proteínas Quinases Ativadas por Mitógeno , Peptídeos/genética , Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Proteínas Quinases Dependentes de Cálcio-Calmodulina , Sequência Consenso , Ciclinas/genética , DNA Fúngico/genética , Proteínas de Ligação ao GTP/genética , Genes Dominantes , Fator de Acasalamento , Dados de Sequência Molecular , Proteínas Tirosina Quinases/genética , Proteínas/genética , Mapeamento por Restrição , Alinhamento de Sequência , Especificidade da Espécie , Dedos de ZincoRESUMO
The yeast STE18 gene product has sequence and functional similarity to the gamma subunits of G proteins. The cloned STE18 gene was subjected to a saturation mutagenesis using doped oligonucleotides. The populations of mutant genes were screened for two classes of STE18 mutations, those that allowed for increased mating of a strain containing a defective STE4 gene (compensators) and those that inhibited mating even in the presence of a functional STE18 gene (dominant negatives). Three amino acid substitutions that enhanced mating in a specific STE4 (G beta) point mutant background were identified. These compensatory mutations were allele specific and had no detectable phenotype of their own; they may define residues that mediate an association between the G beta and G gamma subunits or in the association of the G beta gamma subunit with other components of the signalling pathway. Several dominant negative mutations were also identified, including two C terminal truncations. These mutant proteins were unable to function in signal transduction by themselves, but they prevented signal transduction mediated by pheromone, as well as the constitutive signalling which is present in cells defective in the GPA1 (G alpha) gene. These mutant proteins may sequester G beta or some other component of the signalling machinery in a nonfunctional complex.
Assuntos
Proteínas Fúngicas/genética , Proteínas de Ligação ao GTP/genética , Peptídeos/fisiologia , Feromônios/fisiologia , Saccharomyces cerevisiae/genética , Proteínas Fúngicas/metabolismo , Proteínas de Ligação ao GTP/fisiologia , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Fator de Acasalamento , Mutagênese , Proteínas Recombinantes de Fusão/metabolismo , Reprodução , Saccharomyces cerevisiae/fisiologia , Transdução de Sinais/fisiologiaRESUMO
Serine/threonine protein kinases of the Ste20p/PAK family are highly conserved from yeast to man. These protein kinases have been implicated in the signaling from heterotrimeric G proteins to mitogen-activated protein (MAP) kinase cascades and to cytoskeletal components such as myosin-I. In the yeast Saccharomyces cerevisiae, Ste20p is involved in transmitting the mating-pheromone signal from the betagamma-subunits of a heterotrimeric G protein to a downstream MAP kinase cascade. We have previously shown that binding of the G-protein beta-subunit (Gbeta) to a short binding site in the non-catalytic carboxy-terminal region of Ste20p is essential fortransmitting the pheromone signal. In this study, we searched protein sequence databases for sequences that are similar to the Gbeta binding site in Ste20p. We identified a sequence motif with the consensus sequence S S L phi P L I/V x phi phi beta (x: any residue; phi: A, I, L, S, or T; beta: basic residues) that is solely present in members of Ste20p/PAK family protein kinases. We propose that this sequence motif, which we have designated GBB (Gbeta binding) motif, is specifically responsible for binding of Gbeta to Ste20p/PAK protein kinases in response to activation of heterotrimeric G protein coupled receptors. Thus, the GBB motif is a novel type of signaling domain that serves to link protein kinases of the Ste20p/PAK family to G protein coupled receptors.
Assuntos
Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae , Sequência de Aminoácidos , Sítios de Ligação , Proteínas Heterotriméricas de Ligação ao GTP/química , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , MAP Quinase Quinase Quinases , Dados de Sequência Molecular , Proteínas Serina-Treonina Quinases/química , Homologia de Sequência de AminoácidosRESUMO
Utilizing a screening method designed for the identification of genes involved with enhanced protein secretion in Saccharomyces cerevisiae we identified a gene, which we named PSE-1 (Protein Secretion Enhancer). Overexpression of PSE-1 in a multi-copy plasmid, as shown by Northern hybridization, gave a fourfold enhancement in total protein secretion. The repertoire of proteins that are found to be secreted in greater quantities include three known biologically active proteins: k1 killer toxin, alpha-factor, and acid phosphatase. The PSE-1 gene is located on chromosome XII of the yeast genome and codes for a hydrophobic protein containing 1089 amino acids. Haploid yeast cells that contained a LEU2 insertion mutation in PSE-1 grow very poorly, a phenotype similar to other conditional SEC mutants at restrictive temperature.
Assuntos
Proteínas Fúngicas/genética , Proteínas de Membrana Transportadoras , Receptores Citoplasmáticos e Nucleares/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Fosfatase Ácida/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Northern Blotting , Clonagem Molecular , DNA Fúngico , Eletroforese em Gel de Poliacrilamida , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Fator de Acasalamento , Dados de Sequência Molecular , Peptídeos/metabolismo , Fenótipo , Plasmídeos , Mapeamento por Restrição , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Alinhamento de SequênciaRESUMO
A cDNA copy of the M2 dsRNA encoding the K2 killer toxin of Saccharomyces cerevisiae was expressed in yeast using the yeast ADH1 promoter. This construct produced K2-specific killing and immunity functions. Efficient K2-specific killing was dependent on the action of the KEX2 endopeptidase and the KEX1 carboxypeptidase, while K2-specific immunity was independent of these proteases. Comparison of the K2 toxin sequence with that of the K1 toxin sequence shows that although they share a common processing pathway and are both encoded by cytoplasmic dsRNAs of similar basic structure, the two toxins are very different at the primary sequence level. Site-specific mutagenesis of the cDNA gene establishes that one of the two potential KEX2 cleavage sites is critical for toxin action but not for immunity. Immunity was reduced by an insertion of two amino acids in the hydrophobic amino-terminal region which left toxin activity intact, indicating an independence of toxin action and immunity.
Assuntos
DNA Fúngico/genética , Proteínas Fúngicas/genética , Genes Fúngicos , Micotoxinas/genética , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Sequência de Bases , Western Blotting , DNA Fúngico/isolamento & purificação , Fatores Matadores de Levedura , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Micotoxinas/isolamento & purificação , Sondas de Oligonucleotídeos , Conformação Proteica , RNA de Cadeia Dupla/genética , Mapeamento por Restrição , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiaeRESUMO
Two recessive mutations in the Saccharomyces cerevisiae SIG1 (suppressor of inhibitory G-protein) gene have been identified by their ability to suppress the signalling defect of dominant-negative variants of the mating response G-protein beta-subunit. The mutations and deletion of SIG1 enhance the sensitivity of the cells to pheromone and stimulate the basal transcription of a mating specific gene, FUS1, suggesting that Sig1p plays a negatively regulatory role in G beta gamma-mediated signal transduction. An additional function of Sig1p in vegetatively growing cells is suggested by the finding that the mutations and deletion of SIG1 cause temperature-sensitive growth defects. The SIG1 gene encodes a protein with a molecular weight of 65 kDa that contains at the amino-terminus two zinc finger-like sequence motifs. Epistasis experiments localize the action of Sig1p within the pheromone signalling pathway at a position at or shortly after the G-protein. We propose that Sig1p represents a novel negative regulator of G beta gamma-mediated signal transduction.
Assuntos
Proteínas Fúngicas/genética , Proteínas de Ligação ao GTP/metabolismo , Proteínas Quinases Ativadas por Mitógeno , Proteínas Repressoras , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Transdução de Sinais/genética , Sequência de Aminoácidos , Sequência de Bases , Mapeamento Cromossômico , Clonagem Molecular , DNA Fúngico , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/fisiologia , Regulação Fúngica da Expressão Gênica/genética , Genes Fúngicos , Fator de Acasalamento , Proteínas de Membrana , Modelos Biológicos , Dados de Sequência Molecular , Mutação/genética , Peptídeos/farmacologia , Fosforilação , Proteínas Tirosina Quinases/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína LigasesRESUMO
In the yeast Saccharomyces cerevisiae the G-protein beta gamma subunits have been shown to trigger downstream events of the pheromone response pathway. We have identified a new gene, designated STE20, which encodes a protein kinase homologue with sequence similarity to protein kinase C, which is required to transmit the pheromone signal from G beta gamma to downstream components of the signalling pathway. Overproduction of the kinase suppresses the mating defect of dominant-negative G beta mutations providing genetic evidence for an interaction with G beta, and epistasis experiments show that this kinase functions after or at the same point as G beta gamma, but before any of the other currently identified components of the signalling pathway. This points to a potentially new mechanism of G-protein mediated signal transduction, the activation of a protein kinase through G beta gamma.
Assuntos
Proteínas Fúngicas/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Feromônios/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Sequência de Bases , Northern Blotting , Mapeamento Cromossômico , DNA Fúngico/metabolismo , Proteínas Fúngicas/genética , Peptídeos e Proteínas de Sinalização Intracelular , MAP Quinase Quinase Quinases , Dados de Sequência Molecular , Fenótipo , Plasmídeos , Proteínas Serina-Treonina Quinases/genética , RNA Fúngico/metabolismo , Mapeamento por Restrição , Saccharomyces cerevisiae/genética , Homologia de Sequência de AminoácidosRESUMO
The STE4 gene, which encodes the beta subunit of the mating response G-protein in the yeast Saccharomyces cerevisiae, was subjected to a saturation mutagenesis using 'doped' oligodeoxynucleotides. We employed a genetic screen to select dominant-negative STE4 mutants, which when overexpressed from the GAL1 promoter, interfered with the signalling function of the wild type protein. The identified inhibitory amino acid alterations define two small regions that are crucially involved in transmitting the mating signal from G beta to downstream components of the signalling pathway. These results underline the positive signalling role of yeast G beta and assign for the first time the positive signalling function of a G-protein beta subunit to specific structural features.
Assuntos
Subunidades beta da Proteína de Ligação ao GTP , Proteínas de Ligação ao GTP/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP , Mutação , Feromônios/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Proteínas de Ligação ao GTP/genética , Genes Dominantes , Dados de Sequência Molecular , Saccharomyces cerevisiae/genéticaRESUMO
Secretory proteins become folded by the action of a number of molecular chaperones soon after they enter the endoplasmic reticulum (ER). In mammalian cells, the ER membrane protein calnexin has been shown to be a molecular chaperone involved in the folding of secretory proteins and in the assembly of cell surface receptor complexes. We have used a PCR strategy to identify the Schizosaccharomyces pombe calnexin homologue, cnx1+. The cnx1+ encoded protein, Cnx1, was shown to be a calcium binding type I integral membrane glycoprotein. At its 5' end, the cnx1+ gene has consensus heat shock transcriptional control elements and was inducible by heat shock and by the calcium ionophore A23187. Unlike the sequence-related Saccharomyces cerevisiae CNE1 gene, the S.pombe cnx1+ gene was essential for cell viability. The full-length Cnx1 protein was able to complement the cnx1+ gene disruption but the full-length mammalian calnexin could not. The ER lumenal domain of Cnx1, which was secreted from cells, was capable of complementing the cnx1::ura4 lethal phenotype. The equivalent region of mammalian calnexin has been shown to possess molecular chaperone activity. It is possible that the lethal phenotype is caused by the absence of this chaperone activity in the S.pombe cnx1+ gene disruption.
Assuntos
Proteínas de Ligação ao Cálcio/genética , Retículo Endoplasmático/genética , Chaperonas Moleculares/genética , Schizosaccharomyces/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas de Ligação ao Cálcio/biossíntese , Calnexina , Cães , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Proteínas de Choque Térmico/biossíntese , Proteínas de Choque Térmico/genética , Glicoproteínas de Membrana/biossíntese , Glicoproteínas de Membrana/genética , Camundongos , Chaperonas Moleculares/biossíntese , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Uracila/biossínteseRESUMO
The beta and gamma subunits of the mating response G-protein in the yeast Saccharomyces cerevisiae have been shown to transmit the mating pheromone signal to downstream components of the pheromone response pathway. A protein kinase homologue encoded by the STE20 gene has recently been identified as a potential G beta gamma target. We have searched multicopy plasmid genomic DNA libraries for high gene dosage suppressors of the signal transduction defect of ste20 mutant cells. This screen identified the STE5 gene encoding an essential component of the pheromone signal transduction pathway. We provide genetic evidence for a functional interrelationship between the STE5 gene product and the Ste20 protein kinase. We have sequenced the STE5 gene, which encodes a predicted protein of 917 amino acids and is specifically transcribed in haploid cells. Transcription is slightly induced by treatment of cells with pheromone. Ste5 has homology with Far1, a yeast protein required for efficient mating and the pheromone-inducible inhibition of a G1 cyclin, Cln2. A STE5 multicopy plasmid is able to suppress the signal transduction defect of far1 null mutant cells suggesting that Ste5, at elevated levels, is able functionally to replace Far1. The genetically predicted point of function of Ste5 within the pheromone signalling pathway suggests that Ste5 is involved in the regulation of a G beta gamma-activated protein kinase cascade which links a G-protein coupled receptor to yeast homologues of mitogen-activated protein kinases.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Transporte , Proteínas de Ciclo Celular , Proteínas Fúngicas/genética , Proteínas de Ligação ao GTP/genética , Genes Supressores , Proteínas Mitocondriais , Proteínas de Plantas/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Repressoras , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Sequência de Bases , Ciclo Celular , Clonagem Molecular , Proteínas Inibidoras de Quinase Dependente de Ciclina , DNA Fúngico , Proteínas Fúngicas/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Genes Fúngicos , Peptídeos e Proteínas de Sinalização Intracelular , MAP Quinase Quinase Quinases , Dados de Sequência Molecular , Mutação , Plasmídeos , Proteínas Serina-Treonina Quinases/metabolismo , Mapeamento por Restrição , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Relação Estrutura-AtividadeRESUMO
The yeast KEX1 gene product has homology to yeast carboxypeptidase Y. A mutant replacing serine at the putative active site of the KEX1 protein abolished activity in vivo. A probable site of processing by the KEX1 product is the C-terminus of the alpha-subunit of killer toxin, where toxin is followed in the precursor by 2 basic residues. Processing involves endoproteolysis following these basic residues and trimming of their C-terminal by a carboxypeptidase. Consistent with the KEX1 product being this carboxypeptidase is its role in alpha-factor pheromone production. In wild-type yeast, KEX1 is not essential for alpha-factor production, as the final pheromone repeat needs no C-terminal processing. However, in a mutant in which alpha-factor production requires a carboxypeptidase, pheromone production is KEX1-dependent.